| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357 | (function(){    // Copyright (c) 2005  Tom Wu    // All Rights Reserved.    // See "LICENSE" for details.    // Basic JavaScript BN library - subset useful for RSA encryption.    // Bits per digit    var dbits;    // JavaScript engine analysis    var canary = 0xdeadbeefcafe;    var j_lm = ((canary&0xffffff)==0xefcafe);    // (public) Constructor    function BigInteger(a,b,c) {      if(a != null)        if("number" == typeof a) this.fromNumber(a,b,c);        else if(b == null && "string" != typeof a) this.fromString(a,256);        else this.fromString(a,b);    }    // return new, unset BigInteger    function nbi() { return new BigInteger(null); }    // am: Compute w_j += (x*this_i), propagate carries,    // c is initial carry, returns final carry.    // c < 3*dvalue, x < 2*dvalue, this_i < dvalue    // We need to select the fastest one that works in this environment.    // am1: use a single mult and divide to get the high bits,    // max digit bits should be 26 because    // max internal value = 2*dvalue^2-2*dvalue (< 2^53)    function am1(i,x,w,j,c,n) {      while(--n >= 0) {        var v = x*this[i++]+w[j]+c;        c = Math.floor(v/0x4000000);        w[j++] = v&0x3ffffff;      }      return c;    }    // am2 avoids a big mult-and-extract completely.    // Max digit bits should be <= 30 because we do bitwise ops    // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)    function am2(i,x,w,j,c,n) {      var xl = x&0x7fff, xh = x>>15;      while(--n >= 0) {        var l = this[i]&0x7fff;        var h = this[i++]>>15;        var m = xh*l+h*xl;        l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);        c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);        w[j++] = l&0x3fffffff;      }      return c;    }    // Alternately, set max digit bits to 28 since some    // browsers slow down when dealing with 32-bit numbers.    function am3(i,x,w,j,c,n) {      var xl = x&0x3fff, xh = x>>14;      while(--n >= 0) {        var l = this[i]&0x3fff;        var h = this[i++]>>14;        var m = xh*l+h*xl;        l = xl*l+((m&0x3fff)<<14)+w[j]+c;        c = (l>>28)+(m>>14)+xh*h;        w[j++] = l&0xfffffff;      }      return c;    }    var inBrowser = typeof navigator !== "undefined";    if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {      BigInteger.prototype.am = am2;      dbits = 30;    }    else if(inBrowser && j_lm && (navigator.appName != "Netscape")) {      BigInteger.prototype.am = am1;      dbits = 26;    }    else { // Mozilla/Netscape seems to prefer am3      BigInteger.prototype.am = am3;      dbits = 28;    }    BigInteger.prototype.DB = dbits;    BigInteger.prototype.DM = ((1<<dbits)-1);    BigInteger.prototype.DV = (1<<dbits);    var BI_FP = 52;    BigInteger.prototype.FV = Math.pow(2,BI_FP);    BigInteger.prototype.F1 = BI_FP-dbits;    BigInteger.prototype.F2 = 2*dbits-BI_FP;    // Digit conversions    var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";    var BI_RC = new Array();    var rr,vv;    rr = "0".charCodeAt(0);    for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;    rr = "a".charCodeAt(0);    for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;    rr = "A".charCodeAt(0);    for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;    function int2char(n) { return BI_RM.charAt(n); }    function intAt(s,i) {      var c = BI_RC[s.charCodeAt(i)];      return (c==null)?-1:c;    }    // (protected) copy this to r    function bnpCopyTo(r) {      for(var i = this.t-1; i >= 0; --i) r[i] = this[i];      r.t = this.t;      r.s = this.s;    }    // (protected) set from integer value x, -DV <= x < DV    function bnpFromInt(x) {      this.t = 1;      this.s = (x<0)?-1:0;      if(x > 0) this[0] = x;      else if(x < -1) this[0] = x+this.DV;      else this.t = 0;    }    // return bigint initialized to value    function nbv(i) { var r = nbi(); r.fromInt(i); return r; }    // (protected) set from string and radix    function bnpFromString(s,b) {      var k;      if(b == 16) k = 4;      else if(b == 8) k = 3;      else if(b == 256) k = 8; // byte array      else if(b == 2) k = 1;      else if(b == 32) k = 5;      else if(b == 4) k = 2;      else { this.fromRadix(s,b); return; }      this.t = 0;      this.s = 0;      var i = s.length, mi = false, sh = 0;      while(--i >= 0) {        var x = (k==8)?s[i]&0xff:intAt(s,i);        if(x < 0) {          if(s.charAt(i) == "-") mi = true;          continue;        }        mi = false;        if(sh == 0)          this[this.t++] = x;        else if(sh+k > this.DB) {          this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;          this[this.t++] = (x>>(this.DB-sh));        }        else          this[this.t-1] |= x<<sh;        sh += k;        if(sh >= this.DB) sh -= this.DB;      }      if(k == 8 && (s[0]&0x80) != 0) {        this.s = -1;        if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;      }      this.clamp();      if(mi) BigInteger.ZERO.subTo(this,this);    }    // (protected) clamp off excess high words    function bnpClamp() {      var c = this.s&this.DM;      while(this.t > 0 && this[this.t-1] == c) --this.t;    }    // (public) return string representation in given radix    function bnToString(b) {      if(this.s < 0) return "-"+this.negate().toString(b);      var k;      if(b == 16) k = 4;      else if(b == 8) k = 3;      else if(b == 2) k = 1;      else if(b == 32) k = 5;      else if(b == 4) k = 2;      else return this.toRadix(b);      var km = (1<<k)-1, d, m = false, r = "", i = this.t;      var p = this.DB-(i*this.DB)%k;      if(i-- > 0) {        if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }        while(i >= 0) {          if(p < k) {            d = (this[i]&((1<<p)-1))<<(k-p);            d |= this[--i]>>(p+=this.DB-k);          }          else {            d = (this[i]>>(p-=k))&km;            if(p <= 0) { p += this.DB; --i; }          }          if(d > 0) m = true;          if(m) r += int2char(d);        }      }      return m?r:"0";    }    // (public) -this    function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }    // (public) |this|    function bnAbs() { return (this.s<0)?this.negate():this; }    // (public) return + if this > a, - if this < a, 0 if equal    function bnCompareTo(a) {      var r = this.s-a.s;      if(r != 0) return r;      var i = this.t;      r = i-a.t;      if(r != 0) return (this.s<0)?-r:r;      while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;      return 0;    }    // returns bit length of the integer x    function nbits(x) {      var r = 1, t;      if((t=x>>>16) != 0) { x = t; r += 16; }      if((t=x>>8) != 0) { x = t; r += 8; }      if((t=x>>4) != 0) { x = t; r += 4; }      if((t=x>>2) != 0) { x = t; r += 2; }      if((t=x>>1) != 0) { x = t; r += 1; }      return r;    }    // (public) return the number of bits in "this"    function bnBitLength() {      if(this.t <= 0) return 0;      return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));    }    // (protected) r = this << n*DB    function bnpDLShiftTo(n,r) {      var i;      for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];      for(i = n-1; i >= 0; --i) r[i] = 0;      r.t = this.t+n;      r.s = this.s;    }    // (protected) r = this >> n*DB    function bnpDRShiftTo(n,r) {      for(var i = n; i < this.t; ++i) r[i-n] = this[i];      r.t = Math.max(this.t-n,0);      r.s = this.s;    }    // (protected) r = this << n    function bnpLShiftTo(n,r) {      var bs = n%this.DB;      var cbs = this.DB-bs;      var bm = (1<<cbs)-1;      var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;      for(i = this.t-1; i >= 0; --i) {        r[i+ds+1] = (this[i]>>cbs)|c;        c = (this[i]&bm)<<bs;      }      for(i = ds-1; i >= 0; --i) r[i] = 0;      r[ds] = c;      r.t = this.t+ds+1;      r.s = this.s;      r.clamp();    }    // (protected) r = this >> n    function bnpRShiftTo(n,r) {      r.s = this.s;      var ds = Math.floor(n/this.DB);      if(ds >= this.t) { r.t = 0; return; }      var bs = n%this.DB;      var cbs = this.DB-bs;      var bm = (1<<bs)-1;      r[0] = this[ds]>>bs;      for(var i = ds+1; i < this.t; ++i) {        r[i-ds-1] |= (this[i]&bm)<<cbs;        r[i-ds] = this[i]>>bs;      }      if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;      r.t = this.t-ds;      r.clamp();    }    // (protected) r = this - a    function bnpSubTo(a,r) {      var i = 0, c = 0, m = Math.min(a.t,this.t);      while(i < m) {        c += this[i]-a[i];        r[i++] = c&this.DM;        c >>= this.DB;      }      if(a.t < this.t) {        c -= a.s;        while(i < this.t) {          c += this[i];          r[i++] = c&this.DM;          c >>= this.DB;        }        c += this.s;      }      else {        c += this.s;        while(i < a.t) {          c -= a[i];          r[i++] = c&this.DM;          c >>= this.DB;        }        c -= a.s;      }      r.s = (c<0)?-1:0;      if(c < -1) r[i++] = this.DV+c;      else if(c > 0) r[i++] = c;      r.t = i;      r.clamp();    }    // (protected) r = this * a, r != this,a (HAC 14.12)    // "this" should be the larger one if appropriate.    function bnpMultiplyTo(a,r) {      var x = this.abs(), y = a.abs();      var i = x.t;      r.t = i+y.t;      while(--i >= 0) r[i] = 0;      for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);      r.s = 0;      r.clamp();      if(this.s != a.s) BigInteger.ZERO.subTo(r,r);    }    // (protected) r = this^2, r != this (HAC 14.16)    function bnpSquareTo(r) {      var x = this.abs();      var i = r.t = 2*x.t;      while(--i >= 0) r[i] = 0;      for(i = 0; i < x.t-1; ++i) {        var c = x.am(i,x[i],r,2*i,0,1);        if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {          r[i+x.t] -= x.DV;          r[i+x.t+1] = 1;        }      }      if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);      r.s = 0;      r.clamp();    }    // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)    // r != q, this != m.  q or r may be null.    function bnpDivRemTo(m,q,r) {      var pm = m.abs();      if(pm.t <= 0) return;      var pt = this.abs();      if(pt.t < pm.t) {        if(q != null) q.fromInt(0);        if(r != null) this.copyTo(r);        return;      }      if(r == null) r = nbi();      var y = nbi(), ts = this.s, ms = m.s;      var nsh = this.DB-nbits(pm[pm.t-1]);   // normalize modulus      if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }      else { pm.copyTo(y); pt.copyTo(r); }      var ys = y.t;      var y0 = y[ys-1];      if(y0 == 0) return;      var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);      var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;      var i = r.t, j = i-ys, t = (q==null)?nbi():q;      y.dlShiftTo(j,t);      if(r.compareTo(t) >= 0) {        r[r.t++] = 1;        r.subTo(t,r);      }      BigInteger.ONE.dlShiftTo(ys,t);      t.subTo(y,y);  // "negative" y so we can replace sub with am later      while(y.t < ys) y[y.t++] = 0;      while(--j >= 0) {        // Estimate quotient digit        var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);        if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) {   // Try it out          y.dlShiftTo(j,t);          r.subTo(t,r);          while(r[i] < --qd) r.subTo(t,r);        }      }      if(q != null) {        r.drShiftTo(ys,q);        if(ts != ms) BigInteger.ZERO.subTo(q,q);      }      r.t = ys;      r.clamp();      if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder      if(ts < 0) BigInteger.ZERO.subTo(r,r);    }    // (public) this mod a    function bnMod(a) {      var r = nbi();      this.abs().divRemTo(a,null,r);      if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);      return r;    }    // Modular reduction using "classic" algorithm    function Classic(m) { this.m = m; }    function cConvert(x) {      if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);      else return x;    }    function cRevert(x) { return x; }    function cReduce(x) { x.divRemTo(this.m,null,x); }    function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }    function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }    Classic.prototype.convert = cConvert;    Classic.prototype.revert = cRevert;    Classic.prototype.reduce = cReduce;    Classic.prototype.mulTo = cMulTo;    Classic.prototype.sqrTo = cSqrTo;    // (protected) return "-1/this % 2^DB"; useful for Mont. reduction    // justification:    //         xy == 1 (mod m)    //         xy =  1+km    //   xy(2-xy) = (1+km)(1-km)    // x[y(2-xy)] = 1-k^2m^2    // x[y(2-xy)] == 1 (mod m^2)    // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2    // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.    // JS multiply "overflows" differently from C/C++, so care is needed here.    function bnpInvDigit() {      if(this.t < 1) return 0;      var x = this[0];      if((x&1) == 0) return 0;      var y = x&3;       // y == 1/x mod 2^2      y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4      y = (y*(2-(x&0xff)*y))&0xff;   // y == 1/x mod 2^8      y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;    // y == 1/x mod 2^16      // last step - calculate inverse mod DV directly;      // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints      y = (y*(2-x*y%this.DV))%this.DV;       // y == 1/x mod 2^dbits      // we really want the negative inverse, and -DV < y < DV      return (y>0)?this.DV-y:-y;    }    // Montgomery reduction    function Montgomery(m) {      this.m = m;      this.mp = m.invDigit();      this.mpl = this.mp&0x7fff;      this.mph = this.mp>>15;      this.um = (1<<(m.DB-15))-1;      this.mt2 = 2*m.t;    }    // xR mod m    function montConvert(x) {      var r = nbi();      x.abs().dlShiftTo(this.m.t,r);      r.divRemTo(this.m,null,r);      if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);      return r;    }    // x/R mod m    function montRevert(x) {      var r = nbi();      x.copyTo(r);      this.reduce(r);      return r;    }    // x = x/R mod m (HAC 14.32)    function montReduce(x) {      while(x.t <= this.mt2) // pad x so am has enough room later        x[x.t++] = 0;      for(var i = 0; i < this.m.t; ++i) {        // faster way of calculating u0 = x[i]*mp mod DV        var j = x[i]&0x7fff;        var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;        // use am to combine the multiply-shift-add into one call        j = i+this.m.t;        x[j] += this.m.am(0,u0,x,i,0,this.m.t);        // propagate carry        while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }      }      x.clamp();      x.drShiftTo(this.m.t,x);      if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);    }    // r = "x^2/R mod m"; x != r    function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }    // r = "xy/R mod m"; x,y != r    function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }    Montgomery.prototype.convert = montConvert;    Montgomery.prototype.revert = montRevert;    Montgomery.prototype.reduce = montReduce;    Montgomery.prototype.mulTo = montMulTo;    Montgomery.prototype.sqrTo = montSqrTo;    // (protected) true iff this is even    function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }    // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)    function bnpExp(e,z) {      if(e > 0xffffffff || e < 1) return BigInteger.ONE;      var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;      g.copyTo(r);      while(--i >= 0) {        z.sqrTo(r,r2);        if((e&(1<<i)) > 0) z.mulTo(r2,g,r);        else { var t = r; r = r2; r2 = t; }      }      return z.revert(r);    }    // (public) this^e % m, 0 <= e < 2^32    function bnModPowInt(e,m) {      var z;      if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);      return this.exp(e,z);    }    // protected    BigInteger.prototype.copyTo = bnpCopyTo;    BigInteger.prototype.fromInt = bnpFromInt;    BigInteger.prototype.fromString = bnpFromString;    BigInteger.prototype.clamp = bnpClamp;    BigInteger.prototype.dlShiftTo = bnpDLShiftTo;    BigInteger.prototype.drShiftTo = bnpDRShiftTo;    BigInteger.prototype.lShiftTo = bnpLShiftTo;    BigInteger.prototype.rShiftTo = bnpRShiftTo;    BigInteger.prototype.subTo = bnpSubTo;    BigInteger.prototype.multiplyTo = bnpMultiplyTo;    BigInteger.prototype.squareTo = bnpSquareTo;    BigInteger.prototype.divRemTo = bnpDivRemTo;    BigInteger.prototype.invDigit = bnpInvDigit;    BigInteger.prototype.isEven = bnpIsEven;    BigInteger.prototype.exp = bnpExp;    // public    BigInteger.prototype.toString = bnToString;    BigInteger.prototype.negate = bnNegate;    BigInteger.prototype.abs = bnAbs;    BigInteger.prototype.compareTo = bnCompareTo;    BigInteger.prototype.bitLength = bnBitLength;    BigInteger.prototype.mod = bnMod;    BigInteger.prototype.modPowInt = bnModPowInt;    // "constants"    BigInteger.ZERO = nbv(0);    BigInteger.ONE = nbv(1);    // Copyright (c) 2005-2009  Tom Wu    // All Rights Reserved.    // See "LICENSE" for details.    // Extended JavaScript BN functions, required for RSA private ops.    // Version 1.1: new BigInteger("0", 10) returns "proper" zero    // Version 1.2: square() API, isProbablePrime fix    // (public)    function bnClone() { var r = nbi(); this.copyTo(r); return r; }    // (public) return value as integer    function bnIntValue() {      if(this.s < 0) {        if(this.t == 1) return this[0]-this.DV;        else if(this.t == 0) return -1;      }      else if(this.t == 1) return this[0];      else if(this.t == 0) return 0;      // assumes 16 < DB < 32      return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];    }    // (public) return value as byte    function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }    // (public) return value as short (assumes DB>=16)    function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }    // (protected) return x s.t. r^x < DV    function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }    // (public) 0 if this == 0, 1 if this > 0    function bnSigNum() {      if(this.s < 0) return -1;      else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;      else return 1;    }    // (protected) convert to radix string    function bnpToRadix(b) {      if(b == null) b = 10;      if(this.signum() == 0 || b < 2 || b > 36) return "0";      var cs = this.chunkSize(b);      var a = Math.pow(b,cs);      var d = nbv(a), y = nbi(), z = nbi(), r = "";      this.divRemTo(d,y,z);      while(y.signum() > 0) {        r = (a+z.intValue()).toString(b).substr(1) + r;        y.divRemTo(d,y,z);      }      return z.intValue().toString(b) + r;    }    // (protected) convert from radix string    function bnpFromRadix(s,b) {      this.fromInt(0);      if(b == null) b = 10;      var cs = this.chunkSize(b);      var d = Math.pow(b,cs), mi = false, j = 0, w = 0;      for(var i = 0; i < s.length; ++i) {        var x = intAt(s,i);        if(x < 0) {          if(s.charAt(i) == "-" && this.signum() == 0) mi = true;          continue;        }        w = b*w+x;        if(++j >= cs) {          this.dMultiply(d);          this.dAddOffset(w,0);          j = 0;          w = 0;        }      }      if(j > 0) {        this.dMultiply(Math.pow(b,j));        this.dAddOffset(w,0);      }      if(mi) BigInteger.ZERO.subTo(this,this);    }    // (protected) alternate constructor    function bnpFromNumber(a,b,c) {      if("number" == typeof b) {        // new BigInteger(int,int,RNG)        if(a < 2) this.fromInt(1);        else {          this.fromNumber(a,c);          if(!this.testBit(a-1))	// force MSB set            this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);          if(this.isEven()) this.dAddOffset(1,0); // force odd          while(!this.isProbablePrime(b)) {            this.dAddOffset(2,0);            if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);          }        }      }      else {        // new BigInteger(int,RNG)        var x = new Array(), t = a&7;        x.length = (a>>3)+1;        b.nextBytes(x);        if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;        this.fromString(x,256);      }    }    // (public) convert to bigendian byte array    function bnToByteArray() {      var i = this.t, r = new Array();      r[0] = this.s;      var p = this.DB-(i*this.DB)%8, d, k = 0;      if(i-- > 0) {        if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)          r[k++] = d|(this.s<<(this.DB-p));        while(i >= 0) {          if(p < 8) {            d = (this[i]&((1<<p)-1))<<(8-p);            d |= this[--i]>>(p+=this.DB-8);          }          else {            d = (this[i]>>(p-=8))&0xff;            if(p <= 0) { p += this.DB; --i; }          }          if((d&0x80) != 0) d |= -256;          if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;          if(k > 0 || d != this.s) r[k++] = d;        }      }      return r;    }    function bnEquals(a) { return(this.compareTo(a)==0); }    function bnMin(a) { return(this.compareTo(a)<0)?this:a; }    function bnMax(a) { return(this.compareTo(a)>0)?this:a; }    // (protected) r = this op a (bitwise)    function bnpBitwiseTo(a,op,r) {      var i, f, m = Math.min(a.t,this.t);      for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);      if(a.t < this.t) {        f = a.s&this.DM;        for(i = m; i < this.t; ++i) r[i] = op(this[i],f);        r.t = this.t;      }      else {        f = this.s&this.DM;        for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);        r.t = a.t;      }      r.s = op(this.s,a.s);      r.clamp();    }    // (public) this & a    function op_and(x,y) { return x&y; }    function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }    // (public) this | a    function op_or(x,y) { return x|y; }    function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }    // (public) this ^ a    function op_xor(x,y) { return x^y; }    function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }    // (public) this & ~a    function op_andnot(x,y) { return x&~y; }    function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }    // (public) ~this    function bnNot() {      var r = nbi();      for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];      r.t = this.t;      r.s = ~this.s;      return r;    }    // (public) this << n    function bnShiftLeft(n) {      var r = nbi();      if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);      return r;    }    // (public) this >> n    function bnShiftRight(n) {      var r = nbi();      if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);      return r;    }    // return index of lowest 1-bit in x, x < 2^31    function lbit(x) {      if(x == 0) return -1;      var r = 0;      if((x&0xffff) == 0) { x >>= 16; r += 16; }      if((x&0xff) == 0) { x >>= 8; r += 8; }      if((x&0xf) == 0) { x >>= 4; r += 4; }      if((x&3) == 0) { x >>= 2; r += 2; }      if((x&1) == 0) ++r;      return r;    }    // (public) returns index of lowest 1-bit (or -1 if none)    function bnGetLowestSetBit() {      for(var i = 0; i < this.t; ++i)        if(this[i] != 0) return i*this.DB+lbit(this[i]);      if(this.s < 0) return this.t*this.DB;      return -1;    }    // return number of 1 bits in x    function cbit(x) {      var r = 0;      while(x != 0) { x &= x-1; ++r; }      return r;    }    // (public) return number of set bits    function bnBitCount() {      var r = 0, x = this.s&this.DM;      for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);      return r;    }    // (public) true iff nth bit is set    function bnTestBit(n) {      var j = Math.floor(n/this.DB);      if(j >= this.t) return(this.s!=0);      return((this[j]&(1<<(n%this.DB)))!=0);    }    // (protected) this op (1<<n)    function bnpChangeBit(n,op) {      var r = BigInteger.ONE.shiftLeft(n);      this.bitwiseTo(r,op,r);      return r;    }    // (public) this | (1<<n)    function bnSetBit(n) { return this.changeBit(n,op_or); }    // (public) this & ~(1<<n)    function bnClearBit(n) { return this.changeBit(n,op_andnot); }    // (public) this ^ (1<<n)    function bnFlipBit(n) { return this.changeBit(n,op_xor); }    // (protected) r = this + a    function bnpAddTo(a,r) {      var i = 0, c = 0, m = Math.min(a.t,this.t);      while(i < m) {        c += this[i]+a[i];        r[i++] = c&this.DM;        c >>= this.DB;      }      if(a.t < this.t) {        c += a.s;        while(i < this.t) {          c += this[i];          r[i++] = c&this.DM;          c >>= this.DB;        }        c += this.s;      }      else {        c += this.s;        while(i < a.t) {          c += a[i];          r[i++] = c&this.DM;          c >>= this.DB;        }        c += a.s;      }      r.s = (c<0)?-1:0;      if(c > 0) r[i++] = c;      else if(c < -1) r[i++] = this.DV+c;      r.t = i;      r.clamp();    }    // (public) this + a    function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }    // (public) this - a    function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }    // (public) this * a    function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }    // (public) this^2    function bnSquare() { var r = nbi(); this.squareTo(r); return r; }    // (public) this / a    function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }    // (public) this % a    function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }    // (public) [this/a,this%a]    function bnDivideAndRemainder(a) {      var q = nbi(), r = nbi();      this.divRemTo(a,q,r);      return new Array(q,r);    }    // (protected) this *= n, this >= 0, 1 < n < DV    function bnpDMultiply(n) {      this[this.t] = this.am(0,n-1,this,0,0,this.t);      ++this.t;      this.clamp();    }    // (protected) this += n << w words, this >= 0    function bnpDAddOffset(n,w) {      if(n == 0) return;      while(this.t <= w) this[this.t++] = 0;      this[w] += n;      while(this[w] >= this.DV) {        this[w] -= this.DV;        if(++w >= this.t) this[this.t++] = 0;        ++this[w];      }    }    // A "null" reducer    function NullExp() {}    function nNop(x) { return x; }    function nMulTo(x,y,r) { x.multiplyTo(y,r); }    function nSqrTo(x,r) { x.squareTo(r); }    NullExp.prototype.convert = nNop;    NullExp.prototype.revert = nNop;    NullExp.prototype.mulTo = nMulTo;    NullExp.prototype.sqrTo = nSqrTo;    // (public) this^e    function bnPow(e) { return this.exp(e,new NullExp()); }    // (protected) r = lower n words of "this * a", a.t <= n    // "this" should be the larger one if appropriate.    function bnpMultiplyLowerTo(a,n,r) {      var i = Math.min(this.t+a.t,n);      r.s = 0; // assumes a,this >= 0      r.t = i;      while(i > 0) r[--i] = 0;      var j;      for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);      for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);      r.clamp();    }    // (protected) r = "this * a" without lower n words, n > 0    // "this" should be the larger one if appropriate.    function bnpMultiplyUpperTo(a,n,r) {      --n;      var i = r.t = this.t+a.t-n;      r.s = 0; // assumes a,this >= 0      while(--i >= 0) r[i] = 0;      for(i = Math.max(n-this.t,0); i < a.t; ++i)        r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);      r.clamp();      r.drShiftTo(1,r);    }    // Barrett modular reduction    function Barrett(m) {      // setup Barrett      this.r2 = nbi();      this.q3 = nbi();      BigInteger.ONE.dlShiftTo(2*m.t,this.r2);      this.mu = this.r2.divide(m);      this.m = m;    }    function barrettConvert(x) {      if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);      else if(x.compareTo(this.m) < 0) return x;      else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }    }    function barrettRevert(x) { return x; }    // x = x mod m (HAC 14.42)    function barrettReduce(x) {      x.drShiftTo(this.m.t-1,this.r2);      if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }      this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);      this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);      while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);      x.subTo(this.r2,x);      while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);    }    // r = x^2 mod m; x != r    function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }    // r = x*y mod m; x,y != r    function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }    Barrett.prototype.convert = barrettConvert;    Barrett.prototype.revert = barrettRevert;    Barrett.prototype.reduce = barrettReduce;    Barrett.prototype.mulTo = barrettMulTo;    Barrett.prototype.sqrTo = barrettSqrTo;    // (public) this^e % m (HAC 14.85)    function bnModPow(e,m) {      var i = e.bitLength(), k, r = nbv(1), z;      if(i <= 0) return r;      else if(i < 18) k = 1;      else if(i < 48) k = 3;      else if(i < 144) k = 4;      else if(i < 768) k = 5;      else k = 6;      if(i < 8)        z = new Classic(m);      else if(m.isEven())        z = new Barrett(m);      else        z = new Montgomery(m);      // precomputation      var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;      g[1] = z.convert(this);      if(k > 1) {        var g2 = nbi();        z.sqrTo(g[1],g2);        while(n <= km) {          g[n] = nbi();          z.mulTo(g2,g[n-2],g[n]);          n += 2;        }      }      var j = e.t-1, w, is1 = true, r2 = nbi(), t;      i = nbits(e[j])-1;      while(j >= 0) {        if(i >= k1) w = (e[j]>>(i-k1))&km;        else {          w = (e[j]&((1<<(i+1))-1))<<(k1-i);          if(j > 0) w |= e[j-1]>>(this.DB+i-k1);        }        n = k;        while((w&1) == 0) { w >>= 1; --n; }        if((i -= n) < 0) { i += this.DB; --j; }        if(is1) {	// ret == 1, don't bother squaring or multiplying it          g[w].copyTo(r);          is1 = false;        }        else {          while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }          if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }          z.mulTo(r2,g[w],r);        }        while(j >= 0 && (e[j]&(1<<i)) == 0) {          z.sqrTo(r,r2); t = r; r = r2; r2 = t;          if(--i < 0) { i = this.DB-1; --j; }        }      }      return z.revert(r);    }    // (public) gcd(this,a) (HAC 14.54)    function bnGCD(a) {      var x = (this.s<0)?this.negate():this.clone();      var y = (a.s<0)?a.negate():a.clone();      if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }      var i = x.getLowestSetBit(), g = y.getLowestSetBit();      if(g < 0) return x;      if(i < g) g = i;      if(g > 0) {        x.rShiftTo(g,x);        y.rShiftTo(g,y);      }      while(x.signum() > 0) {        if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);        if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);        if(x.compareTo(y) >= 0) {          x.subTo(y,x);          x.rShiftTo(1,x);        }        else {          y.subTo(x,y);          y.rShiftTo(1,y);        }      }      if(g > 0) y.lShiftTo(g,y);      return y;    }    // (protected) this % n, n < 2^26    function bnpModInt(n) {      if(n <= 0) return 0;      var d = this.DV%n, r = (this.s<0)?n-1:0;      if(this.t > 0)        if(d == 0) r = this[0]%n;        else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;      return r;    }    // (public) 1/this % m (HAC 14.61)    function bnModInverse(m) {      var ac = m.isEven();      if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;      var u = m.clone(), v = this.clone();      var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);      while(u.signum() != 0) {        while(u.isEven()) {          u.rShiftTo(1,u);          if(ac) {            if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }            a.rShiftTo(1,a);          }          else if(!b.isEven()) b.subTo(m,b);          b.rShiftTo(1,b);        }        while(v.isEven()) {          v.rShiftTo(1,v);          if(ac) {            if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }            c.rShiftTo(1,c);          }          else if(!d.isEven()) d.subTo(m,d);          d.rShiftTo(1,d);        }        if(u.compareTo(v) >= 0) {          u.subTo(v,u);          if(ac) a.subTo(c,a);          b.subTo(d,b);        }        else {          v.subTo(u,v);          if(ac) c.subTo(a,c);          d.subTo(b,d);        }      }      if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;      if(d.compareTo(m) >= 0) return d.subtract(m);      if(d.signum() < 0) d.addTo(m,d); else return d;      if(d.signum() < 0) return d.add(m); else return d;    }    var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];    var lplim = (1<<26)/lowprimes[lowprimes.length-1];    // (public) test primality with certainty >= 1-.5^t    function bnIsProbablePrime(t) {      var i, x = this.abs();      if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {        for(i = 0; i < lowprimes.length; ++i)          if(x[0] == lowprimes[i]) return true;        return false;      }      if(x.isEven()) return false;      i = 1;      while(i < lowprimes.length) {        var m = lowprimes[i], j = i+1;        while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];        m = x.modInt(m);        while(i < j) if(m%lowprimes[i++] == 0) return false;      }      return x.millerRabin(t);    }    // (protected) true if probably prime (HAC 4.24, Miller-Rabin)    function bnpMillerRabin(t) {      var n1 = this.subtract(BigInteger.ONE);      var k = n1.getLowestSetBit();      if(k <= 0) return false;      var r = n1.shiftRight(k);      t = (t+1)>>1;      if(t > lowprimes.length) t = lowprimes.length;      var a = nbi();      for(var i = 0; i < t; ++i) {        //Pick bases at random, instead of starting at 2        a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);        var y = a.modPow(r,this);        if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {          var j = 1;          while(j++ < k && y.compareTo(n1) != 0) {            y = y.modPowInt(2,this);            if(y.compareTo(BigInteger.ONE) == 0) return false;          }          if(y.compareTo(n1) != 0) return false;        }      }      return true;    }    // protected    BigInteger.prototype.chunkSize = bnpChunkSize;    BigInteger.prototype.toRadix = bnpToRadix;    BigInteger.prototype.fromRadix = bnpFromRadix;    BigInteger.prototype.fromNumber = bnpFromNumber;    BigInteger.prototype.bitwiseTo = bnpBitwiseTo;    BigInteger.prototype.changeBit = bnpChangeBit;    BigInteger.prototype.addTo = bnpAddTo;    BigInteger.prototype.dMultiply = bnpDMultiply;    BigInteger.prototype.dAddOffset = bnpDAddOffset;    BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;    BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;    BigInteger.prototype.modInt = bnpModInt;    BigInteger.prototype.millerRabin = bnpMillerRabin;    // public    BigInteger.prototype.clone = bnClone;    BigInteger.prototype.intValue = bnIntValue;    BigInteger.prototype.byteValue = bnByteValue;    BigInteger.prototype.shortValue = bnShortValue;    BigInteger.prototype.signum = bnSigNum;    BigInteger.prototype.toByteArray = bnToByteArray;    BigInteger.prototype.equals = bnEquals;    BigInteger.prototype.min = bnMin;    BigInteger.prototype.max = bnMax;    BigInteger.prototype.and = bnAnd;    BigInteger.prototype.or = bnOr;    BigInteger.prototype.xor = bnXor;    BigInteger.prototype.andNot = bnAndNot;    BigInteger.prototype.not = bnNot;    BigInteger.prototype.shiftLeft = bnShiftLeft;    BigInteger.prototype.shiftRight = bnShiftRight;    BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;    BigInteger.prototype.bitCount = bnBitCount;    BigInteger.prototype.testBit = bnTestBit;    BigInteger.prototype.setBit = bnSetBit;    BigInteger.prototype.clearBit = bnClearBit;    BigInteger.prototype.flipBit = bnFlipBit;    BigInteger.prototype.add = bnAdd;    BigInteger.prototype.subtract = bnSubtract;    BigInteger.prototype.multiply = bnMultiply;    BigInteger.prototype.divide = bnDivide;    BigInteger.prototype.remainder = bnRemainder;    BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;    BigInteger.prototype.modPow = bnModPow;    BigInteger.prototype.modInverse = bnModInverse;    BigInteger.prototype.pow = bnPow;    BigInteger.prototype.gcd = bnGCD;    BigInteger.prototype.isProbablePrime = bnIsProbablePrime;    // JSBN-specific extension    BigInteger.prototype.square = bnSquare;    // Expose the Barrett function    BigInteger.prototype.Barrett = Barrett    // BigInteger interfaces not implemented in jsbn:    // BigInteger(int signum, byte[] magnitude)    // double doubleValue()    // float floatValue()    // int hashCode()    // long longValue()    // static BigInteger valueOf(long val)	// Random number generator - requires a PRNG backend, e.g. prng4.js	// For best results, put code like	// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>	// in your main HTML document.	var rng_state;	var rng_pool;	var rng_pptr;	// Mix in a 32-bit integer into the pool	function rng_seed_int(x) {	  rng_pool[rng_pptr++] ^= x & 255;	  rng_pool[rng_pptr++] ^= (x >> 8) & 255;	  rng_pool[rng_pptr++] ^= (x >> 16) & 255;	  rng_pool[rng_pptr++] ^= (x >> 24) & 255;	  if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;	}	// Mix in the current time (w/milliseconds) into the pool	function rng_seed_time() {	  rng_seed_int(new Date().getTime());	}	// Initialize the pool with junk if needed.	if(rng_pool == null) {	  rng_pool = new Array();	  rng_pptr = 0;	  var t;	  if(typeof window !== "undefined" && window.crypto) {		if (window.crypto.getRandomValues) {		  // Use webcrypto if available		  var ua = new Uint8Array(32);		  window.crypto.getRandomValues(ua);		  for(t = 0; t < 32; ++t)			rng_pool[rng_pptr++] = ua[t];		}		else if(navigator.appName == "Netscape" && navigator.appVersion < "5") {		  // Extract entropy (256 bits) from NS4 RNG if available		  var z = window.crypto.random(32);		  for(t = 0; t < z.length; ++t)			rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;		}	  }	  while(rng_pptr < rng_psize) {  // extract some randomness from Math.random()		t = Math.floor(65536 * Math.random());		rng_pool[rng_pptr++] = t >>> 8;		rng_pool[rng_pptr++] = t & 255;	  }	  rng_pptr = 0;	  rng_seed_time();	  //rng_seed_int(window.screenX);	  //rng_seed_int(window.screenY);	}	function rng_get_byte() {	  if(rng_state == null) {		rng_seed_time();		rng_state = prng_newstate();		rng_state.init(rng_pool);		for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)		  rng_pool[rng_pptr] = 0;		rng_pptr = 0;		//rng_pool = null;	  }	  // TODO: allow reseeding after first request	  return rng_state.next();	}	function rng_get_bytes(ba) {	  var i;	  for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();	}	function SecureRandom() {}	SecureRandom.prototype.nextBytes = rng_get_bytes;	// prng4.js - uses Arcfour as a PRNG	function Arcfour() {	  this.i = 0;	  this.j = 0;	  this.S = new Array();	}	// Initialize arcfour context from key, an array of ints, each from [0..255]	function ARC4init(key) {	  var i, j, t;	  for(i = 0; i < 256; ++i)		this.S[i] = i;	  j = 0;	  for(i = 0; i < 256; ++i) {		j = (j + this.S[i] + key[i % key.length]) & 255;		t = this.S[i];		this.S[i] = this.S[j];		this.S[j] = t;	  }	  this.i = 0;	  this.j = 0;	}	function ARC4next() {	  var t;	  this.i = (this.i + 1) & 255;	  this.j = (this.j + this.S[this.i]) & 255;	  t = this.S[this.i];	  this.S[this.i] = this.S[this.j];	  this.S[this.j] = t;	  return this.S[(t + this.S[this.i]) & 255];	}	Arcfour.prototype.init = ARC4init;	Arcfour.prototype.next = ARC4next;	// Plug in your RNG constructor here	function prng_newstate() {	  return new Arcfour();	}	// Pool size must be a multiple of 4 and greater than 32.	// An array of bytes the size of the pool will be passed to init()	var rng_psize = 256;  BigInteger.SecureRandom = SecureRandom;  BigInteger.BigInteger = BigInteger;  if (typeof exports !== 'undefined') {    exports = module.exports = BigInteger;  } else {    this.BigInteger = BigInteger;    this.SecureRandom = SecureRandom;  }}).call(this);
 |