| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502 | var util = require('util'),  Match = require ('../match');/** * Binary search implementation (recursive) */function binarySearch(arr, searchValue) {  function find(arr, searchValue, left, right) {    if (right < left)      return -1;    /*    int mid = mid = (left + right) / 2;    There is a bug in the above line;    Joshua Bloch suggests the following replacement:    */    var mid = Math.floor((left + right) >>> 1);    if (searchValue > arr[mid])      return find(arr, searchValue, mid + 1, right);    if (searchValue < arr[mid])      return find(arr, searchValue, left, mid - 1);    return mid;  };  return find(arr, searchValue, 0, arr.length - 1);};// 'Character'  iterated character class.//    Recognizers for specific mbcs encodings make their 'characters' available//    by providing a nextChar() function that fills in an instance of iteratedChar//    with the next char from the input.//    The returned characters are not converted to Unicode, but remain as the raw//    bytes (concatenated into an int) from the codepage data.////  For Asian charsets, use the raw input rather than the input that has been//   stripped of markup.  Detection only considers multi-byte chars, effectively//   stripping markup anyway, and double byte chars do occur in markup too.//function IteratedChar() {  this.charValue = 0; // 1-4 bytes from the raw input data  this.index     = 0;  this.nextIndex = 0;  this.error     = false;  this.done      = false;  this.reset = function() {    this.charValue = 0;    this.index     = -1;    this.nextIndex = 0;    this.error     = false;    this.done      = false;  };  this.nextByte = function(det) {    if (this.nextIndex >= det.fRawLength) {      this.done = true;      return -1;    }    var byteValue = det.fRawInput[this.nextIndex++] & 0x00ff;    return byteValue;  };};/** * Asian double or multi-byte - charsets. * Match is determined mostly by the input data adhering to the * encoding scheme for the charset, and, optionally, * frequency-of-occurence of characters. */function mbcs() {};/** * Test the match of this charset with the input text data *      which is obtained via the CharsetDetector object. * * @param det  The CharsetDetector, which contains the input text *             to be checked for being in this charset. * @return     Two values packed into one int  (Damn java, anyhow) *             bits 0-7:  the match confidence, ranging from 0-100 *             bits 8-15: The match reason, an enum-like value. */mbcs.prototype.match = function(det) {  var singleByteCharCount = 0,  //TODO Do we really need this?    doubleByteCharCount = 0,    commonCharCount     = 0,    badCharCount        = 0,    totalCharCount      = 0,    confidence          = 0;  var iter = new IteratedChar();  detectBlock: {    for (iter.reset(); this.nextChar(iter, det);) {      totalCharCount++;      if (iter.error) {        badCharCount++;      } else {        var cv = iter.charValue & 0xFFFFFFFF;        if (cv <= 0xff) {          singleByteCharCount++;        } else {          doubleByteCharCount++;          if (this.commonChars != null) {            // NOTE: This assumes that there are no 4-byte common chars.            if (binarySearch(this.commonChars, cv) >= 0) {              commonCharCount++;            }          }        }      }      if (badCharCount >= 2 && badCharCount * 5 >= doubleByteCharCount) {        // console.log('its here!')        // Bail out early if the byte data is not matching the encoding scheme.        break detectBlock;      }    }    if (doubleByteCharCount <= 10 && badCharCount== 0) {      // Not many multi-byte chars.      if (doubleByteCharCount == 0 && totalCharCount < 10) {        // There weren't any multibyte sequences, and there was a low density of non-ASCII single bytes.        // We don't have enough data to have any confidence.        // Statistical analysis of single byte non-ASCII charcters would probably help here.        confidence = 0;      }      else {        //   ASCII or ISO file?  It's probably not our encoding,        //   but is not incompatible with our encoding, so don't give it a zero.        confidence = 10;      }      break detectBlock;    }    //    //  No match if there are too many characters that don't fit the encoding scheme.    //    (should we have zero tolerance for these?)    //    if (doubleByteCharCount < 20 * badCharCount) {      confidence = 0;      break detectBlock;    }    if (this.commonChars == null) {      // We have no statistics on frequently occuring characters.      //  Assess confidence purely on having a reasonable number of      //  multi-byte characters (the more the better      confidence = 30 + doubleByteCharCount - 20 * badCharCount;      if (confidence > 100) {        confidence = 100;      }    } else {      //      // Frequency of occurence statistics exist.      //      var maxVal = Math.log(parseFloat(doubleByteCharCount) / 4);      var scaleFactor = 90.0 / maxVal;      confidence = Math.floor(Math.log(commonCharCount + 1) * scaleFactor + 10);      confidence = Math.min(confidence, 100);    }  }   // end of detectBlock:  return confidence == 0 ? null : new Match(det, this, confidence);};/** * Get the next character (however many bytes it is) from the input data *    Subclasses for specific charset encodings must implement this function *    to get characters according to the rules of their encoding scheme. * *  This function is not a method of class iteratedChar only because *   that would require a lot of extra derived classes, which is awkward. * @param it  The iteratedChar 'struct' into which the returned char is placed. * @param det The charset detector, which is needed to get at the input byte data *            being iterated over. * @return    True if a character was returned, false at end of input. */mbcs.prototype.nextChar = function(iter, det) {};/** * Shift-JIS charset recognizer. */module.exports.sjis = function() {  this.name = function() {    return 'Shift-JIS';  };  this.language = function() {    return 'ja';  };  // TODO:  This set of data comes from the character frequency-  //        of-occurence analysis tool.  The data needs to be moved  //        into a resource and loaded from there.  this.commonChars = [    0x8140, 0x8141, 0x8142, 0x8145, 0x815b, 0x8169, 0x816a, 0x8175, 0x8176, 0x82a0,    0x82a2, 0x82a4, 0x82a9, 0x82aa, 0x82ab, 0x82ad, 0x82af, 0x82b1, 0x82b3, 0x82b5,    0x82b7, 0x82bd, 0x82be, 0x82c1, 0x82c4, 0x82c5, 0x82c6, 0x82c8, 0x82c9, 0x82cc,    0x82cd, 0x82dc, 0x82e0, 0x82e7, 0x82e8, 0x82e9, 0x82ea, 0x82f0, 0x82f1, 0x8341,    0x8343, 0x834e, 0x834f, 0x8358, 0x835e, 0x8362, 0x8367, 0x8375, 0x8376, 0x8389,    0x838a, 0x838b, 0x838d, 0x8393, 0x8e96, 0x93fa, 0x95aa  ];  this.nextChar = function(iter, det) {    iter.index = iter.nextIndex;    iter.error = false;    var firstByte;    firstByte = iter.charValue = iter.nextByte(det);    if (firstByte < 0)      return false;    if (firstByte <= 0x7f || (firstByte > 0xa0 && firstByte <= 0xdf))      return true;    var secondByte = iter.nextByte(det);    if (secondByte < 0)      return false;    iter.charValue = (firstByte << 8) | secondByte;    if (! ((secondByte >= 0x40 && secondByte <= 0x7f) || (secondByte >= 0x80 && secondByte <= 0xff))) {      // Illegal second byte value.      iter.error = true;    }    return true;  };};util.inherits(module.exports.sjis, mbcs);/** *   Big5 charset recognizer. */module.exports.big5 = function() {  this.name = function() {    return 'Big5';  };  this.language = function() {    return 'zh';  };  // TODO:  This set of data comes from the character frequency-  //        of-occurence analysis tool.  The data needs to be moved  //        into a resource and loaded from there.  this.commonChars = [    0xa140, 0xa141, 0xa142, 0xa143, 0xa147, 0xa149, 0xa175, 0xa176, 0xa440, 0xa446,    0xa447, 0xa448, 0xa451, 0xa454, 0xa457, 0xa464, 0xa46a, 0xa46c, 0xa477, 0xa4a3,    0xa4a4, 0xa4a7, 0xa4c1, 0xa4ce, 0xa4d1, 0xa4df, 0xa4e8, 0xa4fd, 0xa540, 0xa548,    0xa558, 0xa569, 0xa5cd, 0xa5e7, 0xa657, 0xa661, 0xa662, 0xa668, 0xa670, 0xa6a8,    0xa6b3, 0xa6b9, 0xa6d3, 0xa6db, 0xa6e6, 0xa6f2, 0xa740, 0xa751, 0xa759, 0xa7da,    0xa8a3, 0xa8a5, 0xa8ad, 0xa8d1, 0xa8d3, 0xa8e4, 0xa8fc, 0xa9c0, 0xa9d2, 0xa9f3,    0xaa6b, 0xaaba, 0xaabe, 0xaacc, 0xaafc, 0xac47, 0xac4f, 0xacb0, 0xacd2, 0xad59,    0xaec9, 0xafe0, 0xb0ea, 0xb16f, 0xb2b3, 0xb2c4, 0xb36f, 0xb44c, 0xb44e, 0xb54c,    0xb5a5, 0xb5bd, 0xb5d0, 0xb5d8, 0xb671, 0xb7ed, 0xb867, 0xb944, 0xbad8, 0xbb44,    0xbba1, 0xbdd1, 0xc2c4, 0xc3b9, 0xc440, 0xc45f  ];  this.nextChar = function(iter, det) {    iter.index = iter.nextIndex;    iter.error = false;    var firstByte = iter.charValue = iter.nextByte(det);    if (firstByte < 0)      return false;    // single byte character.    if (firstByte <= 0x7f || firstByte == 0xff)      return true;    var secondByte = iter.nextByte(det);    if (secondByte < 0)      return false;    iter.charValue = (iter.charValue << 8) | secondByte;    if (secondByte < 0x40 || secondByte == 0x7f || secondByte == 0xff)      iter.error = true;    return true;  };};util.inherits(module.exports.big5, mbcs);/** *  EUC charset recognizers.  One abstract class that provides the common function *  for getting the next character according to the EUC encoding scheme, *  and nested derived classes for EUC_KR, EUC_JP, EUC_CN. * *  Get the next character value for EUC based encodings. *  Character 'value' is simply the raw bytes that make up the character *     packed into an int. */function eucNextChar(iter, det) {  iter.index = iter.nextIndex;  iter.error = false;  var firstByte  = 0;  var secondByte = 0;  var thirdByte  = 0;  //int fourthByte = 0;  buildChar: {    firstByte = iter.charValue = iter.nextByte(det);    if (firstByte < 0) {      // Ran off the end of the input data      iter.done = true;      break buildChar;    }    if (firstByte <= 0x8d) {      // single byte char      break buildChar;    }    secondByte = iter.nextByte(det);    iter.charValue = (iter.charValue << 8) | secondByte;    if (firstByte >= 0xA1 && firstByte <= 0xfe) {      // Two byte Char      if (secondByte < 0xa1) {        iter.error = true;      }      break buildChar;    }    if (firstByte == 0x8e) {      // Code Set 2.      //   In EUC-JP, total char size is 2 bytes, only one byte of actual char value.      //   In EUC-TW, total char size is 4 bytes, three bytes contribute to char value.      // We don't know which we've got.      // Treat it like EUC-JP.  If the data really was EUC-TW, the following two      //   bytes will look like a well formed 2 byte char.      if (secondByte < 0xa1) {        iter.error = true;      }      break buildChar;    }    if (firstByte == 0x8f) {      // Code set 3.      // Three byte total char size, two bytes of actual char value.      thirdByte = iter.nextByte(det);      iter.charValue = (iter.charValue << 8) | thirdByte;      if (thirdByte < 0xa1) {        iter.error = true;      }    }  }  return iter.done == false;};/** * The charset recognize for EUC-JP.  A singleton instance of this class *    is created and kept by the public CharsetDetector class */module.exports.euc_jp = function() {  this.name = function() {    return 'EUC-JP';  };  this.language = function() {    return 'ja';  };  // TODO:  This set of data comes from the character frequency-  //        of-occurence analysis tool.  The data needs to be moved  //        into a resource and loaded from there.  this.commonChars = [    0xa1a1, 0xa1a2, 0xa1a3, 0xa1a6, 0xa1bc, 0xa1ca, 0xa1cb, 0xa1d6, 0xa1d7, 0xa4a2,    0xa4a4, 0xa4a6, 0xa4a8, 0xa4aa, 0xa4ab, 0xa4ac, 0xa4ad, 0xa4af, 0xa4b1, 0xa4b3,    0xa4b5, 0xa4b7, 0xa4b9, 0xa4bb, 0xa4bd, 0xa4bf, 0xa4c0, 0xa4c1, 0xa4c3, 0xa4c4,    0xa4c6, 0xa4c7, 0xa4c8, 0xa4c9, 0xa4ca, 0xa4cb, 0xa4ce, 0xa4cf, 0xa4d0, 0xa4de,    0xa4df, 0xa4e1, 0xa4e2, 0xa4e4, 0xa4e8, 0xa4e9, 0xa4ea, 0xa4eb, 0xa4ec, 0xa4ef,    0xa4f2, 0xa4f3, 0xa5a2, 0xa5a3, 0xa5a4, 0xa5a6, 0xa5a7, 0xa5aa, 0xa5ad, 0xa5af,    0xa5b0, 0xa5b3, 0xa5b5, 0xa5b7, 0xa5b8, 0xa5b9, 0xa5bf, 0xa5c3, 0xa5c6, 0xa5c7,    0xa5c8, 0xa5c9, 0xa5cb, 0xa5d0, 0xa5d5, 0xa5d6, 0xa5d7, 0xa5de, 0xa5e0, 0xa5e1,    0xa5e5, 0xa5e9, 0xa5ea, 0xa5eb, 0xa5ec, 0xa5ed, 0xa5f3, 0xb8a9, 0xb9d4, 0xbaee,    0xbbc8, 0xbef0, 0xbfb7, 0xc4ea, 0xc6fc, 0xc7bd, 0xcab8, 0xcaf3, 0xcbdc, 0xcdd1  ];  this.nextChar = eucNextChar;};util.inherits(module.exports.euc_jp, mbcs);/** * The charset recognize for EUC-KR.  A singleton instance of this class *    is created and kept by the public CharsetDetector class */module.exports.euc_kr = function() {  this.name = function() {    return 'EUC-KR';  };  this.language = function() {    return 'ko';  };  // TODO:  This set of data comes from the character frequency-  //        of-occurence analysis tool.  The data needs to be moved  //        into a resource and loaded from there.  this.commonChars = [    0xb0a1, 0xb0b3, 0xb0c5, 0xb0cd, 0xb0d4, 0xb0e6, 0xb0ed, 0xb0f8, 0xb0fa, 0xb0fc,    0xb1b8, 0xb1b9, 0xb1c7, 0xb1d7, 0xb1e2, 0xb3aa, 0xb3bb, 0xb4c2, 0xb4cf, 0xb4d9,    0xb4eb, 0xb5a5, 0xb5b5, 0xb5bf, 0xb5c7, 0xb5e9, 0xb6f3, 0xb7af, 0xb7c2, 0xb7ce,    0xb8a6, 0xb8ae, 0xb8b6, 0xb8b8, 0xb8bb, 0xb8e9, 0xb9ab, 0xb9ae, 0xb9cc, 0xb9ce,    0xb9fd, 0xbab8, 0xbace, 0xbad0, 0xbaf1, 0xbbe7, 0xbbf3, 0xbbfd, 0xbcad, 0xbcba,    0xbcd2, 0xbcf6, 0xbdba, 0xbdc0, 0xbdc3, 0xbdc5, 0xbec6, 0xbec8, 0xbedf, 0xbeee,    0xbef8, 0xbefa, 0xbfa1, 0xbfa9, 0xbfc0, 0xbfe4, 0xbfeb, 0xbfec, 0xbff8, 0xc0a7,    0xc0af, 0xc0b8, 0xc0ba, 0xc0bb, 0xc0bd, 0xc0c7, 0xc0cc, 0xc0ce, 0xc0cf, 0xc0d6,    0xc0da, 0xc0e5, 0xc0fb, 0xc0fc, 0xc1a4, 0xc1a6, 0xc1b6, 0xc1d6, 0xc1df, 0xc1f6,    0xc1f8, 0xc4a1, 0xc5cd, 0xc6ae, 0xc7cf, 0xc7d1, 0xc7d2, 0xc7d8, 0xc7e5, 0xc8ad  ];  this.nextChar = eucNextChar;};util.inherits(module.exports.euc_kr, mbcs);/** *   GB-18030 recognizer. Uses simplified Chinese statistics. */module.exports.gb_18030 = function() {  this.name = function() {    return 'GB18030';  };  this.language = function() {    return 'zh';  };  /*   *  Get the next character value for EUC based encodings.   *  Character 'value' is simply the raw bytes that make up the character   *     packed into an int.   */  this.nextChar = function(iter, det) {    iter.index = iter.nextIndex;    iter.error = false;    var firstByte  = 0;    var secondByte = 0;    var thirdByte  = 0;    var fourthByte = 0;    buildChar: {      firstByte = iter.charValue = iter.nextByte(det);      if (firstByte < 0) {        // Ran off the end of the input data        iter.done = true;        break buildChar;      }      if (firstByte <= 0x80) {        // single byte char        break buildChar;      }      secondByte = iter.nextByte(det);      iter.charValue = (iter.charValue << 8) | secondByte;      if (firstByte >= 0x81 && firstByte <= 0xFE) {        // Two byte Char        if ((secondByte >= 0x40 && secondByte <= 0x7E) || (secondByte >=80 && secondByte <= 0xFE)) {          break buildChar;        }        // Four byte char        if (secondByte >= 0x30 && secondByte <= 0x39) {          thirdByte = iter.nextByte(det);          if (thirdByte >= 0x81 && thirdByte <= 0xFE) {            fourthByte = iter.nextByte(det);            if (fourthByte >= 0x30 && fourthByte <= 0x39) {              iter.charValue = (iter.charValue << 16) | (thirdByte << 8) | fourthByte;              break buildChar;            }          }        }        iter.error = true;        break buildChar;      }    }    return iter.done == false;  };  // TODO:  This set of data comes from the character frequency-  //        of-occurence analysis tool.  The data needs to be moved  //        into a resource and loaded from there.  this.commonChars = [    0xa1a1, 0xa1a2, 0xa1a3, 0xa1a4, 0xa1b0, 0xa1b1, 0xa1f1, 0xa1f3, 0xa3a1, 0xa3ac,    0xa3ba, 0xb1a8, 0xb1b8, 0xb1be, 0xb2bb, 0xb3c9, 0xb3f6, 0xb4f3, 0xb5bd, 0xb5c4,    0xb5e3, 0xb6af, 0xb6d4, 0xb6e0, 0xb7a2, 0xb7a8, 0xb7bd, 0xb7d6, 0xb7dd, 0xb8b4,    0xb8df, 0xb8f6, 0xb9ab, 0xb9c9, 0xb9d8, 0xb9fa, 0xb9fd, 0xbacd, 0xbba7, 0xbbd6,    0xbbe1, 0xbbfa, 0xbcbc, 0xbcdb, 0xbcfe, 0xbdcc, 0xbecd, 0xbedd, 0xbfb4, 0xbfc6,    0xbfc9, 0xc0b4, 0xc0ed, 0xc1cb, 0xc2db, 0xc3c7, 0xc4dc, 0xc4ea, 0xc5cc, 0xc6f7,    0xc7f8, 0xc8ab, 0xc8cb, 0xc8d5, 0xc8e7, 0xc9cf, 0xc9fa, 0xcab1, 0xcab5, 0xcac7,    0xcad0, 0xcad6, 0xcaf5, 0xcafd, 0xccec, 0xcdf8, 0xceaa, 0xcec4, 0xced2, 0xcee5,    0xcfb5, 0xcfc2, 0xcfd6, 0xd0c2, 0xd0c5, 0xd0d0, 0xd0d4, 0xd1a7, 0xd2aa, 0xd2b2,    0xd2b5, 0xd2bb, 0xd2d4, 0xd3c3, 0xd3d0, 0xd3fd, 0xd4c2, 0xd4da, 0xd5e2, 0xd6d0  ];};util.inherits(module.exports.gb_18030, mbcs);
 |