| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924 | /* *  big.js v5.2.2 *  A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic. *  Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com> *  https://github.com/MikeMcl/big.js/LICENCE *//************************************** EDITABLE DEFAULTS *****************************************/  // The default values below must be integers within the stated ranges.  /*   * The maximum number of decimal places (DP) of the results of operations involving division:   * div and sqrt, and pow with negative exponents.   */var DP = 20,          // 0 to MAX_DP  /*   * The rounding mode (RM) used when rounding to the above decimal places.   *   *  0  Towards zero (i.e. truncate, no rounding).       (ROUND_DOWN)   *  1  To nearest neighbour. If equidistant, round up.  (ROUND_HALF_UP)   *  2  To nearest neighbour. If equidistant, to even.   (ROUND_HALF_EVEN)   *  3  Away from zero.                                  (ROUND_UP)   */  RM = 1,             // 0, 1, 2 or 3  // The maximum value of DP and Big.DP.  MAX_DP = 1E6,       // 0 to 1000000  // The maximum magnitude of the exponent argument to the pow method.  MAX_POWER = 1E6,    // 1 to 1000000  /*   * The negative exponent (NE) at and beneath which toString returns exponential notation.   * (JavaScript numbers: -7)   * -1000000 is the minimum recommended exponent value of a Big.   */  NE = -7,            // 0 to -1000000  /*   * The positive exponent (PE) at and above which toString returns exponential notation.   * (JavaScript numbers: 21)   * 1000000 is the maximum recommended exponent value of a Big.   * (This limit is not enforced or checked.)   */  PE = 21,            // 0 to 1000000/**************************************************************************************************/  // Error messages.  NAME = '[big.js] ',  INVALID = NAME + 'Invalid ',  INVALID_DP = INVALID + 'decimal places',  INVALID_RM = INVALID + 'rounding mode',  DIV_BY_ZERO = NAME + 'Division by zero',  // The shared prototype object.  P = {},  UNDEFINED = void 0,  NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;/* * Create and return a Big constructor. * */function _Big_() {  /*   * The Big constructor and exported function.   * Create and return a new instance of a Big number object.   *   * n {number|string|Big} A numeric value.   */  function Big(n) {    var x = this;    // Enable constructor usage without new.    if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);    // Duplicate.    if (n instanceof Big) {      x.s = n.s;      x.e = n.e;      x.c = n.c.slice();    } else {      parse(x, n);    }    /*     * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which     * points to Object.     */    x.constructor = Big;  }  Big.prototype = P;  Big.DP = DP;  Big.RM = RM;  Big.NE = NE;  Big.PE = PE;  Big.version = '5.2.2';  return Big;}/* * Parse the number or string value passed to a Big constructor. * * x {Big} A Big number instance. * n {number|string} A numeric value. */function parse(x, n) {  var e, i, nl;  // Minus zero?  if (n === 0 && 1 / n < 0) n = '-0';  else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');  // Determine sign.  x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;  // Decimal point?  if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');  // Exponential form?  if ((i = n.search(/e/i)) > 0) {    // Determine exponent.    if (e < 0) e = i;    e += +n.slice(i + 1);    n = n.substring(0, i);  } else if (e < 0) {    // Integer.    e = n.length;  }  nl = n.length;  // Determine leading zeros.  for (i = 0; i < nl && n.charAt(i) == '0';) ++i;  if (i == nl) {    // Zero.    x.c = [x.e = 0];  } else {    // Determine trailing zeros.    for (; nl > 0 && n.charAt(--nl) == '0';);    x.e = e - i - 1;    x.c = [];    // Convert string to array of digits without leading/trailing zeros.    for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);  }  return x;}/* * Round Big x to a maximum of dp decimal places using rounding mode rm. * Called by stringify, P.div, P.round and P.sqrt. * * x {Big} The Big to round. * dp {number} Integer, 0 to MAX_DP inclusive. * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP) * [more] {boolean} Whether the result of division was truncated. */function round(x, dp, rm, more) {  var xc = x.c,    i = x.e + dp + 1;  if (i < xc.length) {    if (rm === 1) {      // xc[i] is the digit after the digit that may be rounded up.      more = xc[i] >= 5;    } else if (rm === 2) {      more = xc[i] > 5 || xc[i] == 5 &&        (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);    } else if (rm === 3) {      more = more || !!xc[0];    } else {      more = false;      if (rm !== 0) throw Error(INVALID_RM);    }    if (i < 1) {      xc.length = 1;      if (more) {        // 1, 0.1, 0.01, 0.001, 0.0001 etc.        x.e = -dp;        xc[0] = 1;      } else {        // Zero.        xc[0] = x.e = 0;      }    } else {      // Remove any digits after the required decimal places.      xc.length = i--;      // Round up?      if (more) {        // Rounding up may mean the previous digit has to be rounded up.        for (; ++xc[i] > 9;) {          xc[i] = 0;          if (!i--) {            ++x.e;            xc.unshift(1);          }        }      }      // Remove trailing zeros.      for (i = xc.length; !xc[--i];) xc.pop();    }  } else if (rm < 0 || rm > 3 || rm !== ~~rm) {    throw Error(INVALID_RM);  }  return x;}/* * Return a string representing the value of Big x in normal or exponential notation. * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf. * * x {Big} * id? {number} Caller id. *         1 toExponential *         2 toFixed *         3 toPrecision *         4 valueOf * n? {number|undefined} Caller's argument. * k? {number|undefined} */function stringify(x, id, n, k) {  var e, s,    Big = x.constructor,    z = !x.c[0];  if (n !== UNDEFINED) {    if (n !== ~~n || n < (id == 3) || n > MAX_DP) {      throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);    }    x = new Big(x);    // The index of the digit that may be rounded up.    n = k - x.e;    // Round?    if (x.c.length > ++k) round(x, n, Big.RM);    // toFixed: recalculate k as x.e may have changed if value rounded up.    if (id == 2) k = x.e + n + 1;    // Append zeros?    for (; x.c.length < k;) x.c.push(0);  }  e = x.e;  s = x.c.join('');  n = s.length;  // Exponential notation?  if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {    s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;  // Normal notation.  } else if (e < 0) {    for (; ++e;) s = '0' + s;    s = '0.' + s;  } else if (e > 0) {    if (++e > n) for (e -= n; e--;) s += '0';    else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);  } else if (n > 1) {    s = s.charAt(0) + '.' + s.slice(1);  }  return x.s < 0 && (!z || id == 4) ? '-' + s : s;}// Prototype/instance methods/* * Return a new Big whose value is the absolute value of this Big. */P.abs = function () {  var x = new this.constructor(this);  x.s = 1;  return x;};/* * Return 1 if the value of this Big is greater than the value of Big y, *       -1 if the value of this Big is less than the value of Big y, or *        0 if they have the same value.*/P.cmp = function (y) {  var isneg,    x = this,    xc = x.c,    yc = (y = new x.constructor(y)).c,    i = x.s,    j = y.s,    k = x.e,    l = y.e;  // Either zero?  if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;  // Signs differ?  if (i != j) return i;  isneg = i < 0;  // Compare exponents.  if (k != l) return k > l ^ isneg ? 1 : -1;  j = (k = xc.length) < (l = yc.length) ? k : l;  // Compare digit by digit.  for (i = -1; ++i < j;) {    if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;  }  // Compare lengths.  return k == l ? 0 : k > l ^ isneg ? 1 : -1;};/* * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded, * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM. */P.div = function (y) {  var x = this,    Big = x.constructor,    a = x.c,                  // dividend    b = (y = new Big(y)).c,   // divisor    k = x.s == y.s ? 1 : -1,    dp = Big.DP;  if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);  // Divisor is zero?  if (!b[0]) throw Error(DIV_BY_ZERO);  // Dividend is 0? Return +-0.  if (!a[0]) return new Big(k * 0);  var bl, bt, n, cmp, ri,    bz = b.slice(),    ai = bl = b.length,    al = a.length,    r = a.slice(0, bl),   // remainder    rl = r.length,    q = y,                // quotient    qc = q.c = [],    qi = 0,    d = dp + (q.e = x.e - y.e) + 1;    // number of digits of the result  q.s = k;  k = d < 0 ? 0 : d;  // Create version of divisor with leading zero.  bz.unshift(0);  // Add zeros to make remainder as long as divisor.  for (; rl++ < bl;) r.push(0);  do {    // n is how many times the divisor goes into current remainder.    for (n = 0; n < 10; n++) {      // Compare divisor and remainder.      if (bl != (rl = r.length)) {        cmp = bl > rl ? 1 : -1;      } else {        for (ri = -1, cmp = 0; ++ri < bl;) {          if (b[ri] != r[ri]) {            cmp = b[ri] > r[ri] ? 1 : -1;            break;          }        }      }      // If divisor < remainder, subtract divisor from remainder.      if (cmp < 0) {        // Remainder can't be more than 1 digit longer than divisor.        // Equalise lengths using divisor with extra leading zero?        for (bt = rl == bl ? b : bz; rl;) {          if (r[--rl] < bt[rl]) {            ri = rl;            for (; ri && !r[--ri];) r[ri] = 9;            --r[ri];            r[rl] += 10;          }          r[rl] -= bt[rl];        }        for (; !r[0];) r.shift();      } else {        break;      }    }    // Add the digit n to the result array.    qc[qi++] = cmp ? n : ++n;    // Update the remainder.    if (r[0] && cmp) r[rl] = a[ai] || 0;    else r = [a[ai]];  } while ((ai++ < al || r[0] !== UNDEFINED) && k--);  // Leading zero? Do not remove if result is simply zero (qi == 1).  if (!qc[0] && qi != 1) {    // There can't be more than one zero.    qc.shift();    q.e--;  }  // Round?  if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);  return q;};/* * Return true if the value of this Big is equal to the value of Big y, otherwise return false. */P.eq = function (y) {  return !this.cmp(y);};/* * Return true if the value of this Big is greater than the value of Big y, otherwise return * false. */P.gt = function (y) {  return this.cmp(y) > 0;};/* * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise * return false. */P.gte = function (y) {  return this.cmp(y) > -1;};/* * Return true if the value of this Big is less than the value of Big y, otherwise return false. */P.lt = function (y) {  return this.cmp(y) < 0;};/* * Return true if the value of this Big is less than or equal to the value of Big y, otherwise * return false. */P.lte = function (y) {  return this.cmp(y) < 1;};/* * Return a new Big whose value is the value of this Big minus the value of Big y. */P.minus = P.sub = function (y) {  var i, j, t, xlty,    x = this,    Big = x.constructor,    a = x.s,    b = (y = new Big(y)).s;  // Signs differ?  if (a != b) {    y.s = -b;    return x.plus(y);  }  var xc = x.c.slice(),    xe = x.e,    yc = y.c,    ye = y.e;  // Either zero?  if (!xc[0] || !yc[0]) {    // y is non-zero? x is non-zero? Or both are zero.    return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);  }  // Determine which is the bigger number. Prepend zeros to equalise exponents.  if (a = xe - ye) {    if (xlty = a < 0) {      a = -a;      t = xc;    } else {      ye = xe;      t = yc;    }    t.reverse();    for (b = a; b--;) t.push(0);    t.reverse();  } else {    // Exponents equal. Check digit by digit.    j = ((xlty = xc.length < yc.length) ? xc : yc).length;    for (a = b = 0; b < j; b++) {      if (xc[b] != yc[b]) {        xlty = xc[b] < yc[b];        break;      }    }  }  // x < y? Point xc to the array of the bigger number.  if (xlty) {    t = xc;    xc = yc;    yc = t;    y.s = -y.s;  }  /*   * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only   * needs to start at yc.length.   */  if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;  // Subtract yc from xc.  for (b = i; j > a;) {    if (xc[--j] < yc[j]) {      for (i = j; i && !xc[--i];) xc[i] = 9;      --xc[i];      xc[j] += 10;    }    xc[j] -= yc[j];  }  // Remove trailing zeros.  for (; xc[--b] === 0;) xc.pop();  // Remove leading zeros and adjust exponent accordingly.  for (; xc[0] === 0;) {    xc.shift();    --ye;  }  if (!xc[0]) {    // n - n = +0    y.s = 1;    // Result must be zero.    xc = [ye = 0];  }  y.c = xc;  y.e = ye;  return y;};/* * Return a new Big whose value is the value of this Big modulo the value of Big y. */P.mod = function (y) {  var ygtx,    x = this,    Big = x.constructor,    a = x.s,    b = (y = new Big(y)).s;  if (!y.c[0]) throw Error(DIV_BY_ZERO);  x.s = y.s = 1;  ygtx = y.cmp(x) == 1;  x.s = a;  y.s = b;  if (ygtx) return new Big(x);  a = Big.DP;  b = Big.RM;  Big.DP = Big.RM = 0;  x = x.div(y);  Big.DP = a;  Big.RM = b;  return this.minus(x.times(y));};/* * Return a new Big whose value is the value of this Big plus the value of Big y. */P.plus = P.add = function (y) {  var t,    x = this,    Big = x.constructor,    a = x.s,    b = (y = new Big(y)).s;  // Signs differ?  if (a != b) {    y.s = -b;    return x.minus(y);  }  var xe = x.e,    xc = x.c,    ye = y.e,    yc = y.c;  // Either zero? y is non-zero? x is non-zero? Or both are zero.  if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);  xc = xc.slice();  // Prepend zeros to equalise exponents.  // Note: reverse faster than unshifts.  if (a = xe - ye) {    if (a > 0) {      ye = xe;      t = yc;    } else {      a = -a;      t = xc;    }    t.reverse();    for (; a--;) t.push(0);    t.reverse();  }  // Point xc to the longer array.  if (xc.length - yc.length < 0) {    t = yc;    yc = xc;    xc = t;  }  a = yc.length;  // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.  for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;  // No need to check for zero, as +x + +y != 0 && -x + -y != 0  if (b) {    xc.unshift(b);    ++ye;  }  // Remove trailing zeros.  for (a = xc.length; xc[--a] === 0;) xc.pop();  y.c = xc;  y.e = ye;  return y;};/* * Return a Big whose value is the value of this Big raised to the power n. * If n is negative, round to a maximum of Big.DP decimal places using rounding * mode Big.RM. * * n {number} Integer, -MAX_POWER to MAX_POWER inclusive. */P.pow = function (n) {  var x = this,    one = new x.constructor(1),    y = one,    isneg = n < 0;  if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');  if (isneg) n = -n;  for (;;) {    if (n & 1) y = y.times(x);    n >>= 1;    if (!n) break;    x = x.times(x);  }  return isneg ? one.div(y) : y;};/* * Return a new Big whose value is the value of this Big rounded using rounding mode rm * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a * multiple of 10**-dp. * If dp is not specified, round to 0 decimal places. * If rm is not specified, use Big.RM. * * dp? {number} Integer, -MAX_DP to MAX_DP inclusive. * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP) */P.round = function (dp, rm) {  var Big = this.constructor;  if (dp === UNDEFINED) dp = 0;  else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);  return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);};/* * Return a new Big whose value is the square root of the value of this Big, rounded, if * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM. */P.sqrt = function () {  var r, c, t,    x = this,    Big = x.constructor,    s = x.s,    e = x.e,    half = new Big(0.5);  // Zero?  if (!x.c[0]) return new Big(x);  // Negative?  if (s < 0) throw Error(NAME + 'No square root');  // Estimate.  s = Math.sqrt(x + '');  // Math.sqrt underflow/overflow?  // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.  if (s === 0 || s === 1 / 0) {    c = x.c.join('');    if (!(c.length + e & 1)) c += '0';    s = Math.sqrt(c);    e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);    r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);  } else {    r = new Big(s);  }  e = r.e + (Big.DP += 4);  // Newton-Raphson iteration.  do {    t = r;    r = half.times(t.plus(x.div(t)));  } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));  return round(r, Big.DP -= 4, Big.RM);};/* * Return a new Big whose value is the value of this Big times the value of Big y. */P.times = P.mul = function (y) {  var c,    x = this,    Big = x.constructor,    xc = x.c,    yc = (y = new Big(y)).c,    a = xc.length,    b = yc.length,    i = x.e,    j = y.e;  // Determine sign of result.  y.s = x.s == y.s ? 1 : -1;  // Return signed 0 if either 0.  if (!xc[0] || !yc[0]) return new Big(y.s * 0);  // Initialise exponent of result as x.e + y.e.  y.e = i + j;  // If array xc has fewer digits than yc, swap xc and yc, and lengths.  if (a < b) {    c = xc;    xc = yc;    yc = c;    j = a;    a = b;    b = j;  }  // Initialise coefficient array of result with zeros.  for (c = new Array(j = a + b); j--;) c[j] = 0;  // Multiply.  // i is initially xc.length.  for (i = b; i--;) {    b = 0;    // a is yc.length.    for (j = a + i; j > i;) {      // Current sum of products at this digit position, plus carry.      b = c[j] + yc[i] * xc[j - i - 1] + b;      c[j--] = b % 10;      // carry      b = b / 10 | 0;    }    c[j] = (c[j] + b) % 10;  }  // Increment result exponent if there is a final carry, otherwise remove leading zero.  if (b) ++y.e;  else c.shift();  // Remove trailing zeros.  for (i = c.length; !c[--i];) c.pop();  y.c = c;  return y;};/* * Return a string representing the value of this Big in exponential notation to dp fixed decimal * places and rounded using Big.RM. * * dp? {number} Integer, 0 to MAX_DP inclusive. */P.toExponential = function (dp) {  return stringify(this, 1, dp, dp);};/* * Return a string representing the value of this Big in normal notation to dp fixed decimal * places and rounded using Big.RM. * * dp? {number} Integer, 0 to MAX_DP inclusive. * * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'. * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'. */P.toFixed = function (dp) {  return stringify(this, 2, dp, this.e + dp);};/* * Return a string representing the value of this Big rounded to sd significant digits using * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent * the integer part of the value in normal notation. * * sd {number} Integer, 1 to MAX_DP inclusive. */P.toPrecision = function (sd) {  return stringify(this, 3, sd, sd - 1);};/* * Return a string representing the value of this Big. * Return exponential notation if this Big has a positive exponent equal to or greater than * Big.PE, or a negative exponent equal to or less than Big.NE. * Omit the sign for negative zero. */P.toString = function () {  return stringify(this);};/* * Return a string representing the value of this Big. * Return exponential notation if this Big has a positive exponent equal to or greater than * Big.PE, or a negative exponent equal to or less than Big.NE. * Include the sign for negative zero. */P.valueOf = P.toJSON = function () {  return stringify(this, 4);};// Exportexport var Big = _Big_();export default Big;
 |