| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941 | /* *  big.js v5.2.2 *  A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic. *  Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com> *  https://github.com/MikeMcl/big.js/LICENCE */;(function (GLOBAL) {  'use strict';  var Big,/************************************** EDITABLE DEFAULTS *****************************************/    // The default values below must be integers within the stated ranges.    /*     * The maximum number of decimal places (DP) of the results of operations involving division:     * div and sqrt, and pow with negative exponents.     */    DP = 20,          // 0 to MAX_DP    /*     * The rounding mode (RM) used when rounding to the above decimal places.     *     *  0  Towards zero (i.e. truncate, no rounding).       (ROUND_DOWN)     *  1  To nearest neighbour. If equidistant, round up.  (ROUND_HALF_UP)     *  2  To nearest neighbour. If equidistant, to even.   (ROUND_HALF_EVEN)     *  3  Away from zero.                                  (ROUND_UP)     */    RM = 1,             // 0, 1, 2 or 3    // The maximum value of DP and Big.DP.    MAX_DP = 1E6,       // 0 to 1000000    // The maximum magnitude of the exponent argument to the pow method.    MAX_POWER = 1E6,    // 1 to 1000000    /*     * The negative exponent (NE) at and beneath which toString returns exponential notation.     * (JavaScript numbers: -7)     * -1000000 is the minimum recommended exponent value of a Big.     */    NE = -7,            // 0 to -1000000    /*     * The positive exponent (PE) at and above which toString returns exponential notation.     * (JavaScript numbers: 21)     * 1000000 is the maximum recommended exponent value of a Big.     * (This limit is not enforced or checked.)     */    PE = 21,            // 0 to 1000000/**************************************************************************************************/    // Error messages.    NAME = '[big.js] ',    INVALID = NAME + 'Invalid ',    INVALID_DP = INVALID + 'decimal places',    INVALID_RM = INVALID + 'rounding mode',    DIV_BY_ZERO = NAME + 'Division by zero',    // The shared prototype object.    P = {},    UNDEFINED = void 0,    NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;  /*   * Create and return a Big constructor.   *   */  function _Big_() {    /*     * The Big constructor and exported function.     * Create and return a new instance of a Big number object.     *     * n {number|string|Big} A numeric value.     */    function Big(n) {      var x = this;      // Enable constructor usage without new.      if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);      // Duplicate.      if (n instanceof Big) {        x.s = n.s;        x.e = n.e;        x.c = n.c.slice();      } else {        parse(x, n);      }      /*       * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which       * points to Object.       */      x.constructor = Big;    }    Big.prototype = P;    Big.DP = DP;    Big.RM = RM;    Big.NE = NE;    Big.PE = PE;    Big.version = '5.2.2';    return Big;  }  /*   * Parse the number or string value passed to a Big constructor.   *   * x {Big} A Big number instance.   * n {number|string} A numeric value.   */  function parse(x, n) {    var e, i, nl;    // Minus zero?    if (n === 0 && 1 / n < 0) n = '-0';    else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');    // Determine sign.    x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;    // Decimal point?    if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');    // Exponential form?    if ((i = n.search(/e/i)) > 0) {      // Determine exponent.      if (e < 0) e = i;      e += +n.slice(i + 1);      n = n.substring(0, i);    } else if (e < 0) {      // Integer.      e = n.length;    }    nl = n.length;    // Determine leading zeros.    for (i = 0; i < nl && n.charAt(i) == '0';) ++i;    if (i == nl) {      // Zero.      x.c = [x.e = 0];    } else {      // Determine trailing zeros.      for (; nl > 0 && n.charAt(--nl) == '0';);      x.e = e - i - 1;      x.c = [];      // Convert string to array of digits without leading/trailing zeros.      for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);    }    return x;  }  /*   * Round Big x to a maximum of dp decimal places using rounding mode rm.   * Called by stringify, P.div, P.round and P.sqrt.   *   * x {Big} The Big to round.   * dp {number} Integer, 0 to MAX_DP inclusive.   * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)   * [more] {boolean} Whether the result of division was truncated.   */  function round(x, dp, rm, more) {    var xc = x.c,      i = x.e + dp + 1;    if (i < xc.length) {      if (rm === 1) {        // xc[i] is the digit after the digit that may be rounded up.        more = xc[i] >= 5;      } else if (rm === 2) {        more = xc[i] > 5 || xc[i] == 5 &&          (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);      } else if (rm === 3) {        more = more || !!xc[0];      } else {        more = false;        if (rm !== 0) throw Error(INVALID_RM);      }      if (i < 1) {        xc.length = 1;        if (more) {          // 1, 0.1, 0.01, 0.001, 0.0001 etc.          x.e = -dp;          xc[0] = 1;        } else {          // Zero.          xc[0] = x.e = 0;        }      } else {        // Remove any digits after the required decimal places.        xc.length = i--;        // Round up?        if (more) {          // Rounding up may mean the previous digit has to be rounded up.          for (; ++xc[i] > 9;) {            xc[i] = 0;            if (!i--) {              ++x.e;              xc.unshift(1);            }          }        }        // Remove trailing zeros.        for (i = xc.length; !xc[--i];) xc.pop();      }    } else if (rm < 0 || rm > 3 || rm !== ~~rm) {      throw Error(INVALID_RM);    }    return x;  }  /*   * Return a string representing the value of Big x in normal or exponential notation.   * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.   *   * x {Big}   * id? {number} Caller id.   *         1 toExponential   *         2 toFixed   *         3 toPrecision   *         4 valueOf   * n? {number|undefined} Caller's argument.   * k? {number|undefined}   */  function stringify(x, id, n, k) {    var e, s,      Big = x.constructor,      z = !x.c[0];    if (n !== UNDEFINED) {      if (n !== ~~n || n < (id == 3) || n > MAX_DP) {        throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);      }      x = new Big(x);      // The index of the digit that may be rounded up.      n = k - x.e;      // Round?      if (x.c.length > ++k) round(x, n, Big.RM);      // toFixed: recalculate k as x.e may have changed if value rounded up.      if (id == 2) k = x.e + n + 1;      // Append zeros?      for (; x.c.length < k;) x.c.push(0);    }    e = x.e;    s = x.c.join('');    n = s.length;    // Exponential notation?    if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {      s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;    // Normal notation.    } else if (e < 0) {      for (; ++e;) s = '0' + s;      s = '0.' + s;    } else if (e > 0) {      if (++e > n) for (e -= n; e--;) s += '0';      else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);    } else if (n > 1) {      s = s.charAt(0) + '.' + s.slice(1);    }    return x.s < 0 && (!z || id == 4) ? '-' + s : s;  }  // Prototype/instance methods  /*   * Return a new Big whose value is the absolute value of this Big.   */  P.abs = function () {    var x = new this.constructor(this);    x.s = 1;    return x;  };  /*   * Return 1 if the value of this Big is greater than the value of Big y,   *       -1 if the value of this Big is less than the value of Big y, or   *        0 if they have the same value.  */  P.cmp = function (y) {    var isneg,      x = this,      xc = x.c,      yc = (y = new x.constructor(y)).c,      i = x.s,      j = y.s,      k = x.e,      l = y.e;    // Either zero?    if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;    // Signs differ?    if (i != j) return i;    isneg = i < 0;    // Compare exponents.    if (k != l) return k > l ^ isneg ? 1 : -1;    j = (k = xc.length) < (l = yc.length) ? k : l;    // Compare digit by digit.    for (i = -1; ++i < j;) {      if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;    }    // Compare lengths.    return k == l ? 0 : k > l ^ isneg ? 1 : -1;  };  /*   * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,   * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.   */  P.div = function (y) {    var x = this,      Big = x.constructor,      a = x.c,                  // dividend      b = (y = new Big(y)).c,   // divisor      k = x.s == y.s ? 1 : -1,      dp = Big.DP;    if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);    // Divisor is zero?    if (!b[0]) throw Error(DIV_BY_ZERO);    // Dividend is 0? Return +-0.    if (!a[0]) return new Big(k * 0);    var bl, bt, n, cmp, ri,      bz = b.slice(),      ai = bl = b.length,      al = a.length,      r = a.slice(0, bl),   // remainder      rl = r.length,      q = y,                // quotient      qc = q.c = [],      qi = 0,      d = dp + (q.e = x.e - y.e) + 1;    // number of digits of the result    q.s = k;    k = d < 0 ? 0 : d;    // Create version of divisor with leading zero.    bz.unshift(0);    // Add zeros to make remainder as long as divisor.    for (; rl++ < bl;) r.push(0);    do {      // n is how many times the divisor goes into current remainder.      for (n = 0; n < 10; n++) {        // Compare divisor and remainder.        if (bl != (rl = r.length)) {          cmp = bl > rl ? 1 : -1;        } else {          for (ri = -1, cmp = 0; ++ri < bl;) {            if (b[ri] != r[ri]) {              cmp = b[ri] > r[ri] ? 1 : -1;              break;            }          }        }        // If divisor < remainder, subtract divisor from remainder.        if (cmp < 0) {          // Remainder can't be more than 1 digit longer than divisor.          // Equalise lengths using divisor with extra leading zero?          for (bt = rl == bl ? b : bz; rl;) {            if (r[--rl] < bt[rl]) {              ri = rl;              for (; ri && !r[--ri];) r[ri] = 9;              --r[ri];              r[rl] += 10;            }            r[rl] -= bt[rl];          }          for (; !r[0];) r.shift();        } else {          break;        }      }      // Add the digit n to the result array.      qc[qi++] = cmp ? n : ++n;      // Update the remainder.      if (r[0] && cmp) r[rl] = a[ai] || 0;      else r = [a[ai]];    } while ((ai++ < al || r[0] !== UNDEFINED) && k--);    // Leading zero? Do not remove if result is simply zero (qi == 1).    if (!qc[0] && qi != 1) {      // There can't be more than one zero.      qc.shift();      q.e--;    }    // Round?    if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);    return q;  };  /*   * Return true if the value of this Big is equal to the value of Big y, otherwise return false.   */  P.eq = function (y) {    return !this.cmp(y);  };  /*   * Return true if the value of this Big is greater than the value of Big y, otherwise return   * false.   */  P.gt = function (y) {    return this.cmp(y) > 0;  };  /*   * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise   * return false.   */  P.gte = function (y) {    return this.cmp(y) > -1;  };  /*   * Return true if the value of this Big is less than the value of Big y, otherwise return false.   */  P.lt = function (y) {    return this.cmp(y) < 0;  };  /*   * Return true if the value of this Big is less than or equal to the value of Big y, otherwise   * return false.   */  P.lte = function (y) {    return this.cmp(y) < 1;  };  /*   * Return a new Big whose value is the value of this Big minus the value of Big y.   */  P.minus = P.sub = function (y) {    var i, j, t, xlty,      x = this,      Big = x.constructor,      a = x.s,      b = (y = new Big(y)).s;    // Signs differ?    if (a != b) {      y.s = -b;      return x.plus(y);    }    var xc = x.c.slice(),      xe = x.e,      yc = y.c,      ye = y.e;    // Either zero?    if (!xc[0] || !yc[0]) {      // y is non-zero? x is non-zero? Or both are zero.      return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);    }    // Determine which is the bigger number. Prepend zeros to equalise exponents.    if (a = xe - ye) {      if (xlty = a < 0) {        a = -a;        t = xc;      } else {        ye = xe;        t = yc;      }      t.reverse();      for (b = a; b--;) t.push(0);      t.reverse();    } else {      // Exponents equal. Check digit by digit.      j = ((xlty = xc.length < yc.length) ? xc : yc).length;      for (a = b = 0; b < j; b++) {        if (xc[b] != yc[b]) {          xlty = xc[b] < yc[b];          break;        }      }    }    // x < y? Point xc to the array of the bigger number.    if (xlty) {      t = xc;      xc = yc;      yc = t;      y.s = -y.s;    }    /*     * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only     * needs to start at yc.length.     */    if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;    // Subtract yc from xc.    for (b = i; j > a;) {      if (xc[--j] < yc[j]) {        for (i = j; i && !xc[--i];) xc[i] = 9;        --xc[i];        xc[j] += 10;      }      xc[j] -= yc[j];    }    // Remove trailing zeros.    for (; xc[--b] === 0;) xc.pop();    // Remove leading zeros and adjust exponent accordingly.    for (; xc[0] === 0;) {      xc.shift();      --ye;    }    if (!xc[0]) {      // n - n = +0      y.s = 1;      // Result must be zero.      xc = [ye = 0];    }    y.c = xc;    y.e = ye;    return y;  };  /*   * Return a new Big whose value is the value of this Big modulo the value of Big y.   */  P.mod = function (y) {    var ygtx,      x = this,      Big = x.constructor,      a = x.s,      b = (y = new Big(y)).s;    if (!y.c[0]) throw Error(DIV_BY_ZERO);    x.s = y.s = 1;    ygtx = y.cmp(x) == 1;    x.s = a;    y.s = b;    if (ygtx) return new Big(x);    a = Big.DP;    b = Big.RM;    Big.DP = Big.RM = 0;    x = x.div(y);    Big.DP = a;    Big.RM = b;    return this.minus(x.times(y));  };  /*   * Return a new Big whose value is the value of this Big plus the value of Big y.   */  P.plus = P.add = function (y) {    var t,      x = this,      Big = x.constructor,      a = x.s,      b = (y = new Big(y)).s;    // Signs differ?    if (a != b) {      y.s = -b;      return x.minus(y);    }    var xe = x.e,      xc = x.c,      ye = y.e,      yc = y.c;    // Either zero? y is non-zero? x is non-zero? Or both are zero.    if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);    xc = xc.slice();    // Prepend zeros to equalise exponents.    // Note: reverse faster than unshifts.    if (a = xe - ye) {      if (a > 0) {        ye = xe;        t = yc;      } else {        a = -a;        t = xc;      }      t.reverse();      for (; a--;) t.push(0);      t.reverse();    }    // Point xc to the longer array.    if (xc.length - yc.length < 0) {      t = yc;      yc = xc;      xc = t;    }    a = yc.length;    // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.    for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;    // No need to check for zero, as +x + +y != 0 && -x + -y != 0    if (b) {      xc.unshift(b);      ++ye;    }    // Remove trailing zeros.    for (a = xc.length; xc[--a] === 0;) xc.pop();    y.c = xc;    y.e = ye;    return y;  };  /*   * Return a Big whose value is the value of this Big raised to the power n.   * If n is negative, round to a maximum of Big.DP decimal places using rounding   * mode Big.RM.   *   * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.   */  P.pow = function (n) {    var x = this,      one = new x.constructor(1),      y = one,      isneg = n < 0;    if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');    if (isneg) n = -n;    for (;;) {      if (n & 1) y = y.times(x);      n >>= 1;      if (!n) break;      x = x.times(x);    }    return isneg ? one.div(y) : y;  };  /*   * Return a new Big whose value is the value of this Big rounded using rounding mode rm   * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a   * multiple of 10**-dp.   * If dp is not specified, round to 0 decimal places.   * If rm is not specified, use Big.RM.   *   * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.   * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)   */  P.round = function (dp, rm) {    var Big = this.constructor;    if (dp === UNDEFINED) dp = 0;    else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);    return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);  };  /*   * Return a new Big whose value is the square root of the value of this Big, rounded, if   * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.   */  P.sqrt = function () {    var r, c, t,      x = this,      Big = x.constructor,      s = x.s,      e = x.e,      half = new Big(0.5);    // Zero?    if (!x.c[0]) return new Big(x);    // Negative?    if (s < 0) throw Error(NAME + 'No square root');    // Estimate.    s = Math.sqrt(x + '');    // Math.sqrt underflow/overflow?    // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.    if (s === 0 || s === 1 / 0) {      c = x.c.join('');      if (!(c.length + e & 1)) c += '0';      s = Math.sqrt(c);      e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);      r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);    } else {      r = new Big(s);    }    e = r.e + (Big.DP += 4);    // Newton-Raphson iteration.    do {      t = r;      r = half.times(t.plus(x.div(t)));    } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));    return round(r, Big.DP -= 4, Big.RM);  };  /*   * Return a new Big whose value is the value of this Big times the value of Big y.   */  P.times = P.mul = function (y) {    var c,      x = this,      Big = x.constructor,      xc = x.c,      yc = (y = new Big(y)).c,      a = xc.length,      b = yc.length,      i = x.e,      j = y.e;    // Determine sign of result.    y.s = x.s == y.s ? 1 : -1;    // Return signed 0 if either 0.    if (!xc[0] || !yc[0]) return new Big(y.s * 0);    // Initialise exponent of result as x.e + y.e.    y.e = i + j;    // If array xc has fewer digits than yc, swap xc and yc, and lengths.    if (a < b) {      c = xc;      xc = yc;      yc = c;      j = a;      a = b;      b = j;    }    // Initialise coefficient array of result with zeros.    for (c = new Array(j = a + b); j--;) c[j] = 0;    // Multiply.    // i is initially xc.length.    for (i = b; i--;) {      b = 0;      // a is yc.length.      for (j = a + i; j > i;) {        // Current sum of products at this digit position, plus carry.        b = c[j] + yc[i] * xc[j - i - 1] + b;        c[j--] = b % 10;        // carry        b = b / 10 | 0;      }      c[j] = (c[j] + b) % 10;    }    // Increment result exponent if there is a final carry, otherwise remove leading zero.    if (b) ++y.e;    else c.shift();    // Remove trailing zeros.    for (i = c.length; !c[--i];) c.pop();    y.c = c;    return y;  };  /*   * Return a string representing the value of this Big in exponential notation to dp fixed decimal   * places and rounded using Big.RM.   *   * dp? {number} Integer, 0 to MAX_DP inclusive.   */  P.toExponential = function (dp) {    return stringify(this, 1, dp, dp);  };  /*   * Return a string representing the value of this Big in normal notation to dp fixed decimal   * places and rounded using Big.RM.   *   * dp? {number} Integer, 0 to MAX_DP inclusive.   *   * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.   * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.   */  P.toFixed = function (dp) {    return stringify(this, 2, dp, this.e + dp);  };  /*   * Return a string representing the value of this Big rounded to sd significant digits using   * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent   * the integer part of the value in normal notation.   *   * sd {number} Integer, 1 to MAX_DP inclusive.   */  P.toPrecision = function (sd) {    return stringify(this, 3, sd, sd - 1);  };  /*   * Return a string representing the value of this Big.   * Return exponential notation if this Big has a positive exponent equal to or greater than   * Big.PE, or a negative exponent equal to or less than Big.NE.   * Omit the sign for negative zero.   */  P.toString = function () {    return stringify(this);  };  /*   * Return a string representing the value of this Big.   * Return exponential notation if this Big has a positive exponent equal to or greater than   * Big.PE, or a negative exponent equal to or less than Big.NE.   * Include the sign for negative zero.   */  P.valueOf = P.toJSON = function () {    return stringify(this, 4);  };  // Export  Big = _Big_();  Big['default'] = Big.Big = Big;  //AMD.  if (typeof define === 'function' && define.amd) {    define(function () { return Big; });  // Node and other CommonJS-like environments that support module.exports.  } else if (typeof module !== 'undefined' && module.exports) {    module.exports = Big;  //Browser.  } else {    GLOBAL.Big = Big;  }})(this);
 |