| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 | "use strict";// Simulations show these probabilities for a single change// 93.1% that one group is invalidated// 4.8% that two groups are invalidated// 1.1% that 3 groups are invalidated// 0.1% that 4 or more groups are invalidated//// And these for removing/adding 10 lexically adjacent files// 64.5% that one group is invalidated// 24.8% that two groups are invalidated// 7.8% that 3 groups are invalidated// 2.7% that 4 or more groups are invalidated//// And these for removing/adding 3 random files// 0% that one group is invalidated// 3.7% that two groups are invalidated// 80.8% that 3 groups are invalidated// 12.3% that 4 groups are invalidated// 3.2% that 5 or more groups are invalidated/** * * @param {string} a key * @param {string} b key * @returns {number} the similarity as number */const similarity = (a, b) => {	const l = Math.min(a.length, b.length);	let dist = 0;	for (let i = 0; i < l; i++) {		const ca = a.charCodeAt(i);		const cb = b.charCodeAt(i);		dist += Math.max(0, 10 - Math.abs(ca - cb));	}	return dist;};/** * @param {string} a key * @param {string} b key * @returns {string} the common part and a single char for the difference */const getName = (a, b) => {	const l = Math.min(a.length, b.length);	let r = "";	for (let i = 0; i < l; i++) {		const ca = a.charAt(i);		const cb = b.charAt(i);		r += ca;		if (ca === cb) {			continue;		}		return r;	}	return a;};/** * @template T */class Node {	/**	 * @param {T} item item	 * @param {string} key key	 * @param {number} size size	 */	constructor(item, key, size) {		this.item = item;		this.key = key;		this.size = size;	}}/** * @template T */class Group {	/**	 * @param {Node<T>[]} nodes nodes	 * @param {number[]} similarities similarities between the nodes (length = nodes.length - 1)	 */	constructor(nodes, similarities) {		this.nodes = nodes;		this.similarities = similarities;		this.size = nodes.reduce((size, node) => size + node.size, 0);		/** @type {string} */		this.key = undefined;	}}/** * @template T * @typedef {Object} GroupedItems<T> * @property {string} key * @property {T[]} items * @property {number} size *//** * @template T * @typedef {Object} Options * @property {number} maxSize maximum size of a group * @property {number} minSize minimum size of a group (preferred over maximum size) * @property {Iterable<T>} items a list of items * @property {function(T): number} getSize function to get size of an item * @property {function(T): string} getKey function to get the key of an item *//** * @template T * @param {Options<T>} options options object * @returns {GroupedItems<T>[]} grouped items */module.exports = ({ maxSize, minSize, items, getSize, getKey }) => {	/** @type {Group<T>[]} */	const result = [];	const nodes = Array.from(		items,		item => new Node(item, getKey(item), getSize(item))	);	/** @type {Node<T>[]} */	const initialNodes = [];	// lexically ordering of keys	nodes.sort((a, b) => {		if (a.key < b.key) return -1;		if (a.key > b.key) return 1;		return 0;	});	// return nodes bigger than maxSize directly as group	for (const node of nodes) {		if (node.size >= maxSize) {			result.push(new Group([node], []));		} else {			initialNodes.push(node);		}	}	if (initialNodes.length > 0) {		// calculate similarities between lexically adjacent nodes		/** @type {number[]} */		const similarities = [];		for (let i = 1; i < initialNodes.length; i++) {			const a = initialNodes[i - 1];			const b = initialNodes[i];			similarities.push(similarity(a.key, b.key));		}		const initialGroup = new Group(initialNodes, similarities);		if (initialGroup.size < minSize) {			// We hit an edgecase where the working set is already smaller than minSize			// We merge it with the smallest result node to keep minSize intact			if (result.length > 0) {				const smallestGroup = result.reduce((min, group) =>					min.size > group.size ? group : min				);				for (const node of initialGroup.nodes) smallestGroup.nodes.push(node);				smallestGroup.nodes.sort((a, b) => {					if (a.key < b.key) return -1;					if (a.key > b.key) return 1;					return 0;				});			} else {				// There are no other nodes				// We use all nodes and have to accept that it's smaller than minSize				result.push(initialGroup);			}		} else {			const queue = [initialGroup];			while (queue.length) {				const group = queue.pop();				// only groups bigger than maxSize need to be splitted				if (group.size < maxSize) {					result.push(group);					continue;				}				// find unsplittable area from left and right				// going minSize from left and right				// at least one node need to be included otherwise we get stuck				let left = 0;				let leftSize = 0;				while (leftSize <= minSize) {					leftSize += group.nodes[left].size;					left++;				}				let right = group.nodes.length - 1;				let rightSize = 0;				while (rightSize <= minSize) {					rightSize += group.nodes[right].size;					right--;				}				if (left - 1 > right) {					// can't split group while holding minSize					// because minSize is preferred of maxSize we return					// the group here even while it's too big					// To avoid this make sure maxSize > minSize * 3					result.push(group);					continue;				}				if (left <= right) {					// when there is a area between left and right					// we look for best split point					// we split at the minimum similarity					// here key space is separated the most					let best = left - 1;					let bestSimilarity = group.similarities[best];					for (let i = left; i <= right; i++) {						const similarity = group.similarities[i];						if (similarity < bestSimilarity) {							best = i;							bestSimilarity = similarity;						}					}					left = best + 1;					right = best;				}				// create two new groups for left and right area				// and queue them up				const rightNodes = [group.nodes[right + 1]];				/** @type {number[]} */				const rightSimilaries = [];				for (let i = right + 2; i < group.nodes.length; i++) {					rightSimilaries.push(group.similarities[i - 1]);					rightNodes.push(group.nodes[i]);				}				queue.push(new Group(rightNodes, rightSimilaries));				const leftNodes = [group.nodes[0]];				/** @type {number[]} */				const leftSimilaries = [];				for (let i = 1; i < left; i++) {					leftSimilaries.push(group.similarities[i - 1]);					leftNodes.push(group.nodes[i]);				}				queue.push(new Group(leftNodes, leftSimilaries));			}		}	}	// lexically ordering	result.sort((a, b) => {		if (a.nodes[0].key < b.nodes[0].key) return -1;		if (a.nodes[0].key > b.nodes[0].key) return 1;		return 0;	});	// give every group a name	for (let i = 0; i < result.length; i++) {		const group = result[i];		const first = group.nodes[0];		const last = group.nodes[group.nodes.length - 1];		let name = getName(first.key, last.key);		group.key = name;	}	// return the results	return result.map(group => {		/** @type {GroupedItems} */		return {			key: group.key,			items: group.nodes.map(node => node.item),			size: group.size		};	});};
 |