| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | 
							- /**
 
-  * RSA Key Generation Worker.
 
-  *
 
-  * @author Dave Longley
 
-  *
 
-  * Copyright (c) 2013 Digital Bazaar, Inc.
 
-  */
 
- // worker is built using CommonJS syntax to include all code in one worker file
 
- //importScripts('jsbn.js');
 
- var forge = require('./forge');
 
- require('./jsbn');
 
- // prime constants
 
- var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
 
- var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];
 
- var BigInteger = forge.jsbn.BigInteger;
 
- var BIG_TWO = new BigInteger(null);
 
- BIG_TWO.fromInt(2);
 
- self.addEventListener('message', function(e) {
 
-   var result = findPrime(e.data);
 
-   self.postMessage(result);
 
- });
 
- // start receiving ranges to check
 
- self.postMessage({found: false});
 
- // primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
 
- var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
 
- function findPrime(data) {
 
-   // TODO: abstract based on data.algorithm (PRIMEINC vs. others)
 
-   // create BigInteger from given random bytes
 
-   var num = new BigInteger(data.hex, 16);
 
-   /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
 
-     number we are given is always aligned at 30k + 1. Each time the number is
 
-     determined not to be prime we add to get to the next 'i', eg: if the number
 
-     was at 30k + 1 we add 6. */
 
-   var deltaIdx = 0;
 
-   // find nearest prime
 
-   var workLoad = data.workLoad;
 
-   for(var i = 0; i < workLoad; ++i) {
 
-     // do primality test
 
-     if(isProbablePrime(num)) {
 
-       return {found: true, prime: num.toString(16)};
 
-     }
 
-     // get next potential prime
 
-     num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
 
-   }
 
-   return {found: false};
 
- }
 
- function isProbablePrime(n) {
 
-   // divide by low primes, ignore even checks, etc (n alread aligned properly)
 
-   var i = 1;
 
-   while(i < LOW_PRIMES.length) {
 
-     var m = LOW_PRIMES[i];
 
-     var j = i + 1;
 
-     while(j < LOW_PRIMES.length && m < LP_LIMIT) {
 
-       m *= LOW_PRIMES[j++];
 
-     }
 
-     m = n.modInt(m);
 
-     while(i < j) {
 
-       if(m % LOW_PRIMES[i++] === 0) {
 
-         return false;
 
-       }
 
-     }
 
-   }
 
-   return runMillerRabin(n);
 
- }
 
- // HAC 4.24, Miller-Rabin
 
- function runMillerRabin(n) {
 
-   // n1 = n - 1
 
-   var n1 = n.subtract(BigInteger.ONE);
 
-   // get s and d such that n1 = 2^s * d
 
-   var s = n1.getLowestSetBit();
 
-   if(s <= 0) {
 
-     return false;
 
-   }
 
-   var d = n1.shiftRight(s);
 
-   var k = _getMillerRabinTests(n.bitLength());
 
-   var prng = getPrng();
 
-   var a;
 
-   for(var i = 0; i < k; ++i) {
 
-     // select witness 'a' at random from between 1 and n - 1
 
-     do {
 
-       a = new BigInteger(n.bitLength(), prng);
 
-     } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
 
-     /* See if 'a' is a composite witness. */
 
-     // x = a^d mod n
 
-     var x = a.modPow(d, n);
 
-     // probably prime
 
-     if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {
 
-       continue;
 
-     }
 
-     var j = s;
 
-     while(--j) {
 
-       // x = x^2 mod a
 
-       x = x.modPowInt(2, n);
 
-       // 'n' is composite because no previous x == -1 mod n
 
-       if(x.compareTo(BigInteger.ONE) === 0) {
 
-         return false;
 
-       }
 
-       // x == -1 mod n, so probably prime
 
-       if(x.compareTo(n1) === 0) {
 
-         break;
 
-       }
 
-     }
 
-     // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
 
-     if(j === 0) {
 
-       return false;
 
-     }
 
-   }
 
-   return true;
 
- }
 
- // get pseudo random number generator
 
- function getPrng() {
 
-   // create prng with api that matches BigInteger secure random
 
-   return {
 
-     // x is an array to fill with bytes
 
-     nextBytes: function(x) {
 
-       for(var i = 0; i < x.length; ++i) {
 
-         x[i] = Math.floor(Math.random() * 0xFF);
 
-       }
 
-     }
 
-   };
 
- }
 
- /**
 
-  * Returns the required number of Miller-Rabin tests to generate a
 
-  * prime with an error probability of (1/2)^80.
 
-  *
 
-  * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
 
-  *
 
-  * @param bits the bit size.
 
-  *
 
-  * @return the required number of iterations.
 
-  */
 
- function _getMillerRabinTests(bits) {
 
-   if(bits <= 100) return 27;
 
-   if(bits <= 150) return 18;
 
-   if(bits <= 200) return 15;
 
-   if(bits <= 250) return 12;
 
-   if(bits <= 300) return 9;
 
-   if(bits <= 350) return 8;
 
-   if(bits <= 400) return 7;
 
-   if(bits <= 500) return 6;
 
-   if(bits <= 600) return 5;
 
-   if(bits <= 800) return 4;
 
-   if(bits <= 1250) return 3;
 
-   return 2;
 
- }
 
 
  |