| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999 | 
							- /**
 
-  * Supported cipher modes.
 
-  *
 
-  * @author Dave Longley
 
-  *
 
-  * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 
-  */
 
- var forge = require('./forge');
 
- require('./util');
 
- forge.cipher = forge.cipher || {};
 
- // supported cipher modes
 
- var modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};
 
- /** Electronic codebook (ECB) (Don't use this; it's not secure) **/
 
- modes.ecb = function(options) {
 
-   options = options || {};
 
-   this.name = 'ECB';
 
-   this.cipher = options.cipher;
 
-   this.blockSize = options.blockSize || 16;
 
-   this._ints = this.blockSize / 4;
 
-   this._inBlock = new Array(this._ints);
 
-   this._outBlock = new Array(this._ints);
 
- };
 
- modes.ecb.prototype.start = function(options) {};
 
- modes.ecb.prototype.encrypt = function(input, output, finish) {
 
-   // not enough input to encrypt
 
-   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 
-     return true;
 
-   }
 
-   // get next block
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._inBlock[i] = input.getInt32();
 
-   }
 
-   // encrypt block
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // write output
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     output.putInt32(this._outBlock[i]);
 
-   }
 
- };
 
- modes.ecb.prototype.decrypt = function(input, output, finish) {
 
-   // not enough input to decrypt
 
-   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 
-     return true;
 
-   }
 
-   // get next block
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._inBlock[i] = input.getInt32();
 
-   }
 
-   // decrypt block
 
-   this.cipher.decrypt(this._inBlock, this._outBlock);
 
-   // write output
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     output.putInt32(this._outBlock[i]);
 
-   }
 
- };
 
- modes.ecb.prototype.pad = function(input, options) {
 
-   // add PKCS#7 padding to block (each pad byte is the
 
-   // value of the number of pad bytes)
 
-   var padding = (input.length() === this.blockSize ?
 
-     this.blockSize : (this.blockSize - input.length()));
 
-   input.fillWithByte(padding, padding);
 
-   return true;
 
- };
 
- modes.ecb.prototype.unpad = function(output, options) {
 
-   // check for error: input data not a multiple of blockSize
 
-   if(options.overflow > 0) {
 
-     return false;
 
-   }
 
-   // ensure padding byte count is valid
 
-   var len = output.length();
 
-   var count = output.at(len - 1);
 
-   if(count > (this.blockSize << 2)) {
 
-     return false;
 
-   }
 
-   // trim off padding bytes
 
-   output.truncate(count);
 
-   return true;
 
- };
 
- /** Cipher-block Chaining (CBC) **/
 
- modes.cbc = function(options) {
 
-   options = options || {};
 
-   this.name = 'CBC';
 
-   this.cipher = options.cipher;
 
-   this.blockSize = options.blockSize || 16;
 
-   this._ints = this.blockSize / 4;
 
-   this._inBlock = new Array(this._ints);
 
-   this._outBlock = new Array(this._ints);
 
- };
 
- modes.cbc.prototype.start = function(options) {
 
-   // Note: legacy support for using IV residue (has security flaws)
 
-   // if IV is null, reuse block from previous processing
 
-   if(options.iv === null) {
 
-     // must have a previous block
 
-     if(!this._prev) {
 
-       throw new Error('Invalid IV parameter.');
 
-     }
 
-     this._iv = this._prev.slice(0);
 
-   } else if(!('iv' in options)) {
 
-     throw new Error('Invalid IV parameter.');
 
-   } else {
 
-     // save IV as "previous" block
 
-     this._iv = transformIV(options.iv, this.blockSize);
 
-     this._prev = this._iv.slice(0);
 
-   }
 
- };
 
- modes.cbc.prototype.encrypt = function(input, output, finish) {
 
-   // not enough input to encrypt
 
-   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 
-     return true;
 
-   }
 
-   // get next block
 
-   // CBC XOR's IV (or previous block) with plaintext
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._inBlock[i] = this._prev[i] ^ input.getInt32();
 
-   }
 
-   // encrypt block
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // write output, save previous block
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     output.putInt32(this._outBlock[i]);
 
-   }
 
-   this._prev = this._outBlock;
 
- };
 
- modes.cbc.prototype.decrypt = function(input, output, finish) {
 
-   // not enough input to decrypt
 
-   if(input.length() < this.blockSize && !(finish && input.length() > 0)) {
 
-     return true;
 
-   }
 
-   // get next block
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._inBlock[i] = input.getInt32();
 
-   }
 
-   // decrypt block
 
-   this.cipher.decrypt(this._inBlock, this._outBlock);
 
-   // write output, save previous ciphered block
 
-   // CBC XOR's IV (or previous block) with ciphertext
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     output.putInt32(this._prev[i] ^ this._outBlock[i]);
 
-   }
 
-   this._prev = this._inBlock.slice(0);
 
- };
 
- modes.cbc.prototype.pad = function(input, options) {
 
-   // add PKCS#7 padding to block (each pad byte is the
 
-   // value of the number of pad bytes)
 
-   var padding = (input.length() === this.blockSize ?
 
-     this.blockSize : (this.blockSize - input.length()));
 
-   input.fillWithByte(padding, padding);
 
-   return true;
 
- };
 
- modes.cbc.prototype.unpad = function(output, options) {
 
-   // check for error: input data not a multiple of blockSize
 
-   if(options.overflow > 0) {
 
-     return false;
 
-   }
 
-   // ensure padding byte count is valid
 
-   var len = output.length();
 
-   var count = output.at(len - 1);
 
-   if(count > (this.blockSize << 2)) {
 
-     return false;
 
-   }
 
-   // trim off padding bytes
 
-   output.truncate(count);
 
-   return true;
 
- };
 
- /** Cipher feedback (CFB) **/
 
- modes.cfb = function(options) {
 
-   options = options || {};
 
-   this.name = 'CFB';
 
-   this.cipher = options.cipher;
 
-   this.blockSize = options.blockSize || 16;
 
-   this._ints = this.blockSize / 4;
 
-   this._inBlock = null;
 
-   this._outBlock = new Array(this._ints);
 
-   this._partialBlock = new Array(this._ints);
 
-   this._partialOutput = forge.util.createBuffer();
 
-   this._partialBytes = 0;
 
- };
 
- modes.cfb.prototype.start = function(options) {
 
-   if(!('iv' in options)) {
 
-     throw new Error('Invalid IV parameter.');
 
-   }
 
-   // use IV as first input
 
-   this._iv = transformIV(options.iv, this.blockSize);
 
-   this._inBlock = this._iv.slice(0);
 
-   this._partialBytes = 0;
 
- };
 
- modes.cfb.prototype.encrypt = function(input, output, finish) {
 
-   // not enough input to encrypt
 
-   var inputLength = input.length();
 
-   if(inputLength === 0) {
 
-     return true;
 
-   }
 
-   // encrypt block
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // handle full block
 
-   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 
-     // XOR input with output, write input as output
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._inBlock[i] = input.getInt32() ^ this._outBlock[i];
 
-       output.putInt32(this._inBlock[i]);
 
-     }
 
-     return;
 
-   }
 
-   // handle partial block
 
-   var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 
-   if(partialBytes > 0) {
 
-     partialBytes = this.blockSize - partialBytes;
 
-   }
 
-   // XOR input with output, write input as partial output
 
-   this._partialOutput.clear();
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];
 
-     this._partialOutput.putInt32(this._partialBlock[i]);
 
-   }
 
-   if(partialBytes > 0) {
 
-     // block still incomplete, restore input buffer
 
-     input.read -= this.blockSize;
 
-   } else {
 
-     // block complete, update input block
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._inBlock[i] = this._partialBlock[i];
 
-     }
 
-   }
 
-   // skip any previous partial bytes
 
-   if(this._partialBytes > 0) {
 
-     this._partialOutput.getBytes(this._partialBytes);
 
-   }
 
-   if(partialBytes > 0 && !finish) {
 
-     output.putBytes(this._partialOutput.getBytes(
 
-       partialBytes - this._partialBytes));
 
-     this._partialBytes = partialBytes;
 
-     return true;
 
-   }
 
-   output.putBytes(this._partialOutput.getBytes(
 
-     inputLength - this._partialBytes));
 
-   this._partialBytes = 0;
 
- };
 
- modes.cfb.prototype.decrypt = function(input, output, finish) {
 
-   // not enough input to decrypt
 
-   var inputLength = input.length();
 
-   if(inputLength === 0) {
 
-     return true;
 
-   }
 
-   // encrypt block (CFB always uses encryption mode)
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // handle full block
 
-   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 
-     // XOR input with output, write input as output
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._inBlock[i] = input.getInt32();
 
-       output.putInt32(this._inBlock[i] ^ this._outBlock[i]);
 
-     }
 
-     return;
 
-   }
 
-   // handle partial block
 
-   var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 
-   if(partialBytes > 0) {
 
-     partialBytes = this.blockSize - partialBytes;
 
-   }
 
-   // XOR input with output, write input as partial output
 
-   this._partialOutput.clear();
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._partialBlock[i] = input.getInt32();
 
-     this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);
 
-   }
 
-   if(partialBytes > 0) {
 
-     // block still incomplete, restore input buffer
 
-     input.read -= this.blockSize;
 
-   } else {
 
-     // block complete, update input block
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._inBlock[i] = this._partialBlock[i];
 
-     }
 
-   }
 
-   // skip any previous partial bytes
 
-   if(this._partialBytes > 0) {
 
-     this._partialOutput.getBytes(this._partialBytes);
 
-   }
 
-   if(partialBytes > 0 && !finish) {
 
-     output.putBytes(this._partialOutput.getBytes(
 
-       partialBytes - this._partialBytes));
 
-     this._partialBytes = partialBytes;
 
-     return true;
 
-   }
 
-   output.putBytes(this._partialOutput.getBytes(
 
-     inputLength - this._partialBytes));
 
-   this._partialBytes = 0;
 
- };
 
- /** Output feedback (OFB) **/
 
- modes.ofb = function(options) {
 
-   options = options || {};
 
-   this.name = 'OFB';
 
-   this.cipher = options.cipher;
 
-   this.blockSize = options.blockSize || 16;
 
-   this._ints = this.blockSize / 4;
 
-   this._inBlock = null;
 
-   this._outBlock = new Array(this._ints);
 
-   this._partialOutput = forge.util.createBuffer();
 
-   this._partialBytes = 0;
 
- };
 
- modes.ofb.prototype.start = function(options) {
 
-   if(!('iv' in options)) {
 
-     throw new Error('Invalid IV parameter.');
 
-   }
 
-   // use IV as first input
 
-   this._iv = transformIV(options.iv, this.blockSize);
 
-   this._inBlock = this._iv.slice(0);
 
-   this._partialBytes = 0;
 
- };
 
- modes.ofb.prototype.encrypt = function(input, output, finish) {
 
-   // not enough input to encrypt
 
-   var inputLength = input.length();
 
-   if(input.length() === 0) {
 
-     return true;
 
-   }
 
-   // encrypt block (OFB always uses encryption mode)
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // handle full block
 
-   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 
-     // XOR input with output and update next input
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       output.putInt32(input.getInt32() ^ this._outBlock[i]);
 
-       this._inBlock[i] = this._outBlock[i];
 
-     }
 
-     return;
 
-   }
 
-   // handle partial block
 
-   var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 
-   if(partialBytes > 0) {
 
-     partialBytes = this.blockSize - partialBytes;
 
-   }
 
-   // XOR input with output
 
-   this._partialOutput.clear();
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 
-   }
 
-   if(partialBytes > 0) {
 
-     // block still incomplete, restore input buffer
 
-     input.read -= this.blockSize;
 
-   } else {
 
-     // block complete, update input block
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._inBlock[i] = this._outBlock[i];
 
-     }
 
-   }
 
-   // skip any previous partial bytes
 
-   if(this._partialBytes > 0) {
 
-     this._partialOutput.getBytes(this._partialBytes);
 
-   }
 
-   if(partialBytes > 0 && !finish) {
 
-     output.putBytes(this._partialOutput.getBytes(
 
-       partialBytes - this._partialBytes));
 
-     this._partialBytes = partialBytes;
 
-     return true;
 
-   }
 
-   output.putBytes(this._partialOutput.getBytes(
 
-     inputLength - this._partialBytes));
 
-   this._partialBytes = 0;
 
- };
 
- modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;
 
- /** Counter (CTR) **/
 
- modes.ctr = function(options) {
 
-   options = options || {};
 
-   this.name = 'CTR';
 
-   this.cipher = options.cipher;
 
-   this.blockSize = options.blockSize || 16;
 
-   this._ints = this.blockSize / 4;
 
-   this._inBlock = null;
 
-   this._outBlock = new Array(this._ints);
 
-   this._partialOutput = forge.util.createBuffer();
 
-   this._partialBytes = 0;
 
- };
 
- modes.ctr.prototype.start = function(options) {
 
-   if(!('iv' in options)) {
 
-     throw new Error('Invalid IV parameter.');
 
-   }
 
-   // use IV as first input
 
-   this._iv = transformIV(options.iv, this.blockSize);
 
-   this._inBlock = this._iv.slice(0);
 
-   this._partialBytes = 0;
 
- };
 
- modes.ctr.prototype.encrypt = function(input, output, finish) {
 
-   // not enough input to encrypt
 
-   var inputLength = input.length();
 
-   if(inputLength === 0) {
 
-     return true;
 
-   }
 
-   // encrypt block (CTR always uses encryption mode)
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // handle full block
 
-   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 
-     // XOR input with output
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       output.putInt32(input.getInt32() ^ this._outBlock[i]);
 
-     }
 
-   } else {
 
-     // handle partial block
 
-     var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 
-     if(partialBytes > 0) {
 
-       partialBytes = this.blockSize - partialBytes;
 
-     }
 
-     // XOR input with output
 
-     this._partialOutput.clear();
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 
-     }
 
-     if(partialBytes > 0) {
 
-       // block still incomplete, restore input buffer
 
-       input.read -= this.blockSize;
 
-     }
 
-     // skip any previous partial bytes
 
-     if(this._partialBytes > 0) {
 
-       this._partialOutput.getBytes(this._partialBytes);
 
-     }
 
-     if(partialBytes > 0 && !finish) {
 
-       output.putBytes(this._partialOutput.getBytes(
 
-         partialBytes - this._partialBytes));
 
-       this._partialBytes = partialBytes;
 
-       return true;
 
-     }
 
-     output.putBytes(this._partialOutput.getBytes(
 
-       inputLength - this._partialBytes));
 
-     this._partialBytes = 0;
 
-   }
 
-   // block complete, increment counter (input block)
 
-   inc32(this._inBlock);
 
- };
 
- modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;
 
- /** Galois/Counter Mode (GCM) **/
 
- modes.gcm = function(options) {
 
-   options = options || {};
 
-   this.name = 'GCM';
 
-   this.cipher = options.cipher;
 
-   this.blockSize = options.blockSize || 16;
 
-   this._ints = this.blockSize / 4;
 
-   this._inBlock = new Array(this._ints);
 
-   this._outBlock = new Array(this._ints);
 
-   this._partialOutput = forge.util.createBuffer();
 
-   this._partialBytes = 0;
 
-   // R is actually this value concatenated with 120 more zero bits, but
 
-   // we only XOR against R so the other zeros have no effect -- we just
 
-   // apply this value to the first integer in a block
 
-   this._R = 0xE1000000;
 
- };
 
- modes.gcm.prototype.start = function(options) {
 
-   if(!('iv' in options)) {
 
-     throw new Error('Invalid IV parameter.');
 
-   }
 
-   // ensure IV is a byte buffer
 
-   var iv = forge.util.createBuffer(options.iv);
 
-   // no ciphered data processed yet
 
-   this._cipherLength = 0;
 
-   // default additional data is none
 
-   var additionalData;
 
-   if('additionalData' in options) {
 
-     additionalData = forge.util.createBuffer(options.additionalData);
 
-   } else {
 
-     additionalData = forge.util.createBuffer();
 
-   }
 
-   // default tag length is 128 bits
 
-   if('tagLength' in options) {
 
-     this._tagLength = options.tagLength;
 
-   } else {
 
-     this._tagLength = 128;
 
-   }
 
-   // if tag is given, ensure tag matches tag length
 
-   this._tag = null;
 
-   if(options.decrypt) {
 
-     // save tag to check later
 
-     this._tag = forge.util.createBuffer(options.tag).getBytes();
 
-     if(this._tag.length !== (this._tagLength / 8)) {
 
-       throw new Error('Authentication tag does not match tag length.');
 
-     }
 
-   }
 
-   // create tmp storage for hash calculation
 
-   this._hashBlock = new Array(this._ints);
 
-   // no tag generated yet
 
-   this.tag = null;
 
-   // generate hash subkey
 
-   // (apply block cipher to "zero" block)
 
-   this._hashSubkey = new Array(this._ints);
 
-   this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);
 
-   // generate table M
 
-   // use 4-bit tables (32 component decomposition of a 16 byte value)
 
-   // 8-bit tables take more space and are known to have security
 
-   // vulnerabilities (in native implementations)
 
-   this.componentBits = 4;
 
-   this._m = this.generateHashTable(this._hashSubkey, this.componentBits);
 
-   // Note: support IV length different from 96 bits? (only supporting
 
-   // 96 bits is recommended by NIST SP-800-38D)
 
-   // generate J_0
 
-   var ivLength = iv.length();
 
-   if(ivLength === 12) {
 
-     // 96-bit IV
 
-     this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];
 
-   } else {
 
-     // IV is NOT 96-bits
 
-     this._j0 = [0, 0, 0, 0];
 
-     while(iv.length() > 0) {
 
-       this._j0 = this.ghash(
 
-         this._hashSubkey, this._j0,
 
-         [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);
 
-     }
 
-     this._j0 = this.ghash(
 
-       this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));
 
-   }
 
-   // generate ICB (initial counter block)
 
-   this._inBlock = this._j0.slice(0);
 
-   inc32(this._inBlock);
 
-   this._partialBytes = 0;
 
-   // consume authentication data
 
-   additionalData = forge.util.createBuffer(additionalData);
 
-   // save additional data length as a BE 64-bit number
 
-   this._aDataLength = from64To32(additionalData.length() * 8);
 
-   // pad additional data to 128 bit (16 byte) block size
 
-   var overflow = additionalData.length() % this.blockSize;
 
-   if(overflow) {
 
-     additionalData.fillWithByte(0, this.blockSize - overflow);
 
-   }
 
-   this._s = [0, 0, 0, 0];
 
-   while(additionalData.length() > 0) {
 
-     this._s = this.ghash(this._hashSubkey, this._s, [
 
-       additionalData.getInt32(),
 
-       additionalData.getInt32(),
 
-       additionalData.getInt32(),
 
-       additionalData.getInt32()
 
-     ]);
 
-   }
 
- };
 
- modes.gcm.prototype.encrypt = function(input, output, finish) {
 
-   // not enough input to encrypt
 
-   var inputLength = input.length();
 
-   if(inputLength === 0) {
 
-     return true;
 
-   }
 
-   // encrypt block
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // handle full block
 
-   if(this._partialBytes === 0 && inputLength >= this.blockSize) {
 
-     // XOR input with output
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       output.putInt32(this._outBlock[i] ^= input.getInt32());
 
-     }
 
-     this._cipherLength += this.blockSize;
 
-   } else {
 
-     // handle partial block
 
-     var partialBytes = (this.blockSize - inputLength) % this.blockSize;
 
-     if(partialBytes > 0) {
 
-       partialBytes = this.blockSize - partialBytes;
 
-     }
 
-     // XOR input with output
 
-     this._partialOutput.clear();
 
-     for(var i = 0; i < this._ints; ++i) {
 
-       this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);
 
-     }
 
-     if(partialBytes <= 0 || finish) {
 
-       // handle overflow prior to hashing
 
-       if(finish) {
 
-         // get block overflow
 
-         var overflow = inputLength % this.blockSize;
 
-         this._cipherLength += overflow;
 
-         // truncate for hash function
 
-         this._partialOutput.truncate(this.blockSize - overflow);
 
-       } else {
 
-         this._cipherLength += this.blockSize;
 
-       }
 
-       // get output block for hashing
 
-       for(var i = 0; i < this._ints; ++i) {
 
-         this._outBlock[i] = this._partialOutput.getInt32();
 
-       }
 
-       this._partialOutput.read -= this.blockSize;
 
-     }
 
-     // skip any previous partial bytes
 
-     if(this._partialBytes > 0) {
 
-       this._partialOutput.getBytes(this._partialBytes);
 
-     }
 
-     if(partialBytes > 0 && !finish) {
 
-       // block still incomplete, restore input buffer, get partial output,
 
-       // and return early
 
-       input.read -= this.blockSize;
 
-       output.putBytes(this._partialOutput.getBytes(
 
-         partialBytes - this._partialBytes));
 
-       this._partialBytes = partialBytes;
 
-       return true;
 
-     }
 
-     output.putBytes(this._partialOutput.getBytes(
 
-       inputLength - this._partialBytes));
 
-     this._partialBytes = 0;
 
-   }
 
-   // update hash block S
 
-   this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);
 
-   // increment counter (input block)
 
-   inc32(this._inBlock);
 
- };
 
- modes.gcm.prototype.decrypt = function(input, output, finish) {
 
-   // not enough input to decrypt
 
-   var inputLength = input.length();
 
-   if(inputLength < this.blockSize && !(finish && inputLength > 0)) {
 
-     return true;
 
-   }
 
-   // encrypt block (GCM always uses encryption mode)
 
-   this.cipher.encrypt(this._inBlock, this._outBlock);
 
-   // increment counter (input block)
 
-   inc32(this._inBlock);
 
-   // update hash block S
 
-   this._hashBlock[0] = input.getInt32();
 
-   this._hashBlock[1] = input.getInt32();
 
-   this._hashBlock[2] = input.getInt32();
 
-   this._hashBlock[3] = input.getInt32();
 
-   this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);
 
-   // XOR hash input with output
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);
 
-   }
 
-   // increment cipher data length
 
-   if(inputLength < this.blockSize) {
 
-     this._cipherLength += inputLength % this.blockSize;
 
-   } else {
 
-     this._cipherLength += this.blockSize;
 
-   }
 
- };
 
- modes.gcm.prototype.afterFinish = function(output, options) {
 
-   var rval = true;
 
-   // handle overflow
 
-   if(options.decrypt && options.overflow) {
 
-     output.truncate(this.blockSize - options.overflow);
 
-   }
 
-   // handle authentication tag
 
-   this.tag = forge.util.createBuffer();
 
-   // concatenate additional data length with cipher length
 
-   var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));
 
-   // include lengths in hash
 
-   this._s = this.ghash(this._hashSubkey, this._s, lengths);
 
-   // do GCTR(J_0, S)
 
-   var tag = [];
 
-   this.cipher.encrypt(this._j0, tag);
 
-   for(var i = 0; i < this._ints; ++i) {
 
-     this.tag.putInt32(this._s[i] ^ tag[i]);
 
-   }
 
-   // trim tag to length
 
-   this.tag.truncate(this.tag.length() % (this._tagLength / 8));
 
-   // check authentication tag
 
-   if(options.decrypt && this.tag.bytes() !== this._tag) {
 
-     rval = false;
 
-   }
 
-   return rval;
 
- };
 
- /**
 
-  * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois
 
-  * field multiplication. The field, GF(2^128), is defined by the polynomial:
 
-  *
 
-  * x^128 + x^7 + x^2 + x + 1
 
-  *
 
-  * Which is represented in little-endian binary form as: 11100001 (0xe1). When
 
-  * the value of a coefficient is 1, a bit is set. The value R, is the
 
-  * concatenation of this value and 120 zero bits, yielding a 128-bit value
 
-  * which matches the block size.
 
-  *
 
-  * This function will multiply two elements (vectors of bytes), X and Y, in
 
-  * the field GF(2^128). The result is initialized to zero. For each bit of
 
-  * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd)
 
-  * by the current value of Y. For each bit, the value of Y will be raised by
 
-  * a power of x (multiplied by the polynomial x). This can be achieved by
 
-  * shifting Y once to the right. If the current value of Y, prior to being
 
-  * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial.
 
-  * Otherwise, we must divide by R after shifting to find the remainder.
 
-  *
 
-  * @param x the first block to multiply by the second.
 
-  * @param y the second block to multiply by the first.
 
-  *
 
-  * @return the block result of the multiplication.
 
-  */
 
- modes.gcm.prototype.multiply = function(x, y) {
 
-   var z_i = [0, 0, 0, 0];
 
-   var v_i = y.slice(0);
 
-   // calculate Z_128 (block has 128 bits)
 
-   for(var i = 0; i < 128; ++i) {
 
-     // if x_i is 0, Z_{i+1} = Z_i (unchanged)
 
-     // else Z_{i+1} = Z_i ^ V_i
 
-     // get x_i by finding 32-bit int position, then left shift 1 by remainder
 
-     var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));
 
-     if(x_i) {
 
-       z_i[0] ^= v_i[0];
 
-       z_i[1] ^= v_i[1];
 
-       z_i[2] ^= v_i[2];
 
-       z_i[3] ^= v_i[3];
 
-     }
 
-     // if LSB(V_i) is 1, V_i = V_i >> 1
 
-     // else V_i = (V_i >> 1) ^ R
 
-     this.pow(v_i, v_i);
 
-   }
 
-   return z_i;
 
- };
 
- modes.gcm.prototype.pow = function(x, out) {
 
-   // if LSB(x) is 1, x = x >>> 1
 
-   // else x = (x >>> 1) ^ R
 
-   var lsb = x[3] & 1;
 
-   // always do x >>> 1:
 
-   // starting with the rightmost integer, shift each integer to the right
 
-   // one bit, pulling in the bit from the integer to the left as its top
 
-   // most bit (do this for the last 3 integers)
 
-   for(var i = 3; i > 0; --i) {
 
-     out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);
 
-   }
 
-   // shift the first integer normally
 
-   out[0] = x[0] >>> 1;
 
-   // if lsb was not set, then polynomial had a degree of 127 and doesn't
 
-   // need to divided; otherwise, XOR with R to find the remainder; we only
 
-   // need to XOR the first integer since R technically ends w/120 zero bits
 
-   if(lsb) {
 
-     out[0] ^= this._R;
 
-   }
 
- };
 
- modes.gcm.prototype.tableMultiply = function(x) {
 
-   // assumes 4-bit tables are used
 
-   var z = [0, 0, 0, 0];
 
-   for(var i = 0; i < 32; ++i) {
 
-     var idx = (i / 8) | 0;
 
-     var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;
 
-     var ah = this._m[i][x_i];
 
-     z[0] ^= ah[0];
 
-     z[1] ^= ah[1];
 
-     z[2] ^= ah[2];
 
-     z[3] ^= ah[3];
 
-   }
 
-   return z;
 
- };
 
- /**
 
-  * A continuing version of the GHASH algorithm that operates on a single
 
-  * block. The hash block, last hash value (Ym) and the new block to hash
 
-  * are given.
 
-  *
 
-  * @param h the hash block.
 
-  * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash.
 
-  * @param x the block to hash.
 
-  *
 
-  * @return the hashed value (Ym).
 
-  */
 
- modes.gcm.prototype.ghash = function(h, y, x) {
 
-   y[0] ^= x[0];
 
-   y[1] ^= x[1];
 
-   y[2] ^= x[2];
 
-   y[3] ^= x[3];
 
-   return this.tableMultiply(y);
 
-   //return this.multiply(y, h);
 
- };
 
- /**
 
-  * Precomputes a table for multiplying against the hash subkey. This
 
-  * mechanism provides a substantial speed increase over multiplication
 
-  * performed without a table. The table-based multiplication this table is
 
-  * for solves X * H by multiplying each component of X by H and then
 
-  * composing the results together using XOR.
 
-  *
 
-  * This function can be used to generate tables with different bit sizes
 
-  * for the components, however, this implementation assumes there are
 
-  * 32 components of X (which is a 16 byte vector), therefore each component
 
-  * takes 4-bits (so the table is constructed with bits=4).
 
-  *
 
-  * @param h the hash subkey.
 
-  * @param bits the bit size for a component.
 
-  */
 
- modes.gcm.prototype.generateHashTable = function(h, bits) {
 
-   // TODO: There are further optimizations that would use only the
 
-   // first table M_0 (or some variant) along with a remainder table;
 
-   // this can be explored in the future
 
-   var multiplier = 8 / bits;
 
-   var perInt = 4 * multiplier;
 
-   var size = 16 * multiplier;
 
-   var m = new Array(size);
 
-   for(var i = 0; i < size; ++i) {
 
-     var tmp = [0, 0, 0, 0];
 
-     var idx = (i / perInt) | 0;
 
-     var shft = ((perInt - 1 - (i % perInt)) * bits);
 
-     tmp[idx] = (1 << (bits - 1)) << shft;
 
-     m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);
 
-   }
 
-   return m;
 
- };
 
- /**
 
-  * Generates a table for multiplying against the hash subkey for one
 
-  * particular component (out of all possible component values).
 
-  *
 
-  * @param mid the pre-multiplied value for the middle key of the table.
 
-  * @param bits the bit size for a component.
 
-  */
 
- modes.gcm.prototype.generateSubHashTable = function(mid, bits) {
 
-   // compute the table quickly by minimizing the number of
 
-   // POW operations -- they only need to be performed for powers of 2,
 
-   // all other entries can be composed from those powers using XOR
 
-   var size = 1 << bits;
 
-   var half = size >>> 1;
 
-   var m = new Array(size);
 
-   m[half] = mid.slice(0);
 
-   var i = half >>> 1;
 
-   while(i > 0) {
 
-     // raise m0[2 * i] and store in m0[i]
 
-     this.pow(m[2 * i], m[i] = []);
 
-     i >>= 1;
 
-   }
 
-   i = 2;
 
-   while(i < half) {
 
-     for(var j = 1; j < i; ++j) {
 
-       var m_i = m[i];
 
-       var m_j = m[j];
 
-       m[i + j] = [
 
-         m_i[0] ^ m_j[0],
 
-         m_i[1] ^ m_j[1],
 
-         m_i[2] ^ m_j[2],
 
-         m_i[3] ^ m_j[3]
 
-       ];
 
-     }
 
-     i *= 2;
 
-   }
 
-   m[0] = [0, 0, 0, 0];
 
-   /* Note: We could avoid storing these by doing composition during multiply
 
-   calculate top half using composition by speed is preferred. */
 
-   for(i = half + 1; i < size; ++i) {
 
-     var c = m[i ^ half];
 
-     m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];
 
-   }
 
-   return m;
 
- };
 
- /** Utility functions */
 
- function transformIV(iv, blockSize) {
 
-   if(typeof iv === 'string') {
 
-     // convert iv string into byte buffer
 
-     iv = forge.util.createBuffer(iv);
 
-   }
 
-   if(forge.util.isArray(iv) && iv.length > 4) {
 
-     // convert iv byte array into byte buffer
 
-     var tmp = iv;
 
-     iv = forge.util.createBuffer();
 
-     for(var i = 0; i < tmp.length; ++i) {
 
-       iv.putByte(tmp[i]);
 
-     }
 
-   }
 
-   if(iv.length() < blockSize) {
 
-     throw new Error(
 
-       'Invalid IV length; got ' + iv.length() +
 
-       ' bytes and expected ' + blockSize + ' bytes.');
 
-   }
 
-   if(!forge.util.isArray(iv)) {
 
-     // convert iv byte buffer into 32-bit integer array
 
-     var ints = [];
 
-     var blocks = blockSize / 4;
 
-     for(var i = 0; i < blocks; ++i) {
 
-       ints.push(iv.getInt32());
 
-     }
 
-     iv = ints;
 
-   }
 
-   return iv;
 
- }
 
- function inc32(block) {
 
-   // increment last 32 bits of block only
 
-   block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;
 
- }
 
- function from64To32(num) {
 
-   // convert 64-bit number to two BE Int32s
 
-   return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];
 
- }
 
 
  |