| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924 | 
							- /*
 
-  *  big.js v5.2.2
 
-  *  A small, fast, easy-to-use library for arbitrary-precision decimal arithmetic.
 
-  *  Copyright (c) 2018 Michael Mclaughlin <M8ch88l@gmail.com>
 
-  *  https://github.com/MikeMcl/big.js/LICENCE
 
-  */
 
- /************************************** EDITABLE DEFAULTS *****************************************/
 
-   // The default values below must be integers within the stated ranges.
 
-   /*
 
-    * The maximum number of decimal places (DP) of the results of operations involving division:
 
-    * div and sqrt, and pow with negative exponents.
 
-    */
 
- var DP = 20,          // 0 to MAX_DP
 
-   /*
 
-    * The rounding mode (RM) used when rounding to the above decimal places.
 
-    *
 
-    *  0  Towards zero (i.e. truncate, no rounding).       (ROUND_DOWN)
 
-    *  1  To nearest neighbour. If equidistant, round up.  (ROUND_HALF_UP)
 
-    *  2  To nearest neighbour. If equidistant, to even.   (ROUND_HALF_EVEN)
 
-    *  3  Away from zero.                                  (ROUND_UP)
 
-    */
 
-   RM = 1,             // 0, 1, 2 or 3
 
-   // The maximum value of DP and Big.DP.
 
-   MAX_DP = 1E6,       // 0 to 1000000
 
-   // The maximum magnitude of the exponent argument to the pow method.
 
-   MAX_POWER = 1E6,    // 1 to 1000000
 
-   /*
 
-    * The negative exponent (NE) at and beneath which toString returns exponential notation.
 
-    * (JavaScript numbers: -7)
 
-    * -1000000 is the minimum recommended exponent value of a Big.
 
-    */
 
-   NE = -7,            // 0 to -1000000
 
-   /*
 
-    * The positive exponent (PE) at and above which toString returns exponential notation.
 
-    * (JavaScript numbers: 21)
 
-    * 1000000 is the maximum recommended exponent value of a Big.
 
-    * (This limit is not enforced or checked.)
 
-    */
 
-   PE = 21,            // 0 to 1000000
 
- /**************************************************************************************************/
 
-   // Error messages.
 
-   NAME = '[big.js] ',
 
-   INVALID = NAME + 'Invalid ',
 
-   INVALID_DP = INVALID + 'decimal places',
 
-   INVALID_RM = INVALID + 'rounding mode',
 
-   DIV_BY_ZERO = NAME + 'Division by zero',
 
-   // The shared prototype object.
 
-   P = {},
 
-   UNDEFINED = void 0,
 
-   NUMERIC = /^-?(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
 
- /*
 
-  * Create and return a Big constructor.
 
-  *
 
-  */
 
- function _Big_() {
 
-   /*
 
-    * The Big constructor and exported function.
 
-    * Create and return a new instance of a Big number object.
 
-    *
 
-    * n {number|string|Big} A numeric value.
 
-    */
 
-   function Big(n) {
 
-     var x = this;
 
-     // Enable constructor usage without new.
 
-     if (!(x instanceof Big)) return n === UNDEFINED ? _Big_() : new Big(n);
 
-     // Duplicate.
 
-     if (n instanceof Big) {
 
-       x.s = n.s;
 
-       x.e = n.e;
 
-       x.c = n.c.slice();
 
-     } else {
 
-       parse(x, n);
 
-     }
 
-     /*
 
-      * Retain a reference to this Big constructor, and shadow Big.prototype.constructor which
 
-      * points to Object.
 
-      */
 
-     x.constructor = Big;
 
-   }
 
-   Big.prototype = P;
 
-   Big.DP = DP;
 
-   Big.RM = RM;
 
-   Big.NE = NE;
 
-   Big.PE = PE;
 
-   Big.version = '5.2.2';
 
-   return Big;
 
- }
 
- /*
 
-  * Parse the number or string value passed to a Big constructor.
 
-  *
 
-  * x {Big} A Big number instance.
 
-  * n {number|string} A numeric value.
 
-  */
 
- function parse(x, n) {
 
-   var e, i, nl;
 
-   // Minus zero?
 
-   if (n === 0 && 1 / n < 0) n = '-0';
 
-   else if (!NUMERIC.test(n += '')) throw Error(INVALID + 'number');
 
-   // Determine sign.
 
-   x.s = n.charAt(0) == '-' ? (n = n.slice(1), -1) : 1;
 
-   // Decimal point?
 
-   if ((e = n.indexOf('.')) > -1) n = n.replace('.', '');
 
-   // Exponential form?
 
-   if ((i = n.search(/e/i)) > 0) {
 
-     // Determine exponent.
 
-     if (e < 0) e = i;
 
-     e += +n.slice(i + 1);
 
-     n = n.substring(0, i);
 
-   } else if (e < 0) {
 
-     // Integer.
 
-     e = n.length;
 
-   }
 
-   nl = n.length;
 
-   // Determine leading zeros.
 
-   for (i = 0; i < nl && n.charAt(i) == '0';) ++i;
 
-   if (i == nl) {
 
-     // Zero.
 
-     x.c = [x.e = 0];
 
-   } else {
 
-     // Determine trailing zeros.
 
-     for (; nl > 0 && n.charAt(--nl) == '0';);
 
-     x.e = e - i - 1;
 
-     x.c = [];
 
-     // Convert string to array of digits without leading/trailing zeros.
 
-     for (e = 0; i <= nl;) x.c[e++] = +n.charAt(i++);
 
-   }
 
-   return x;
 
- }
 
- /*
 
-  * Round Big x to a maximum of dp decimal places using rounding mode rm.
 
-  * Called by stringify, P.div, P.round and P.sqrt.
 
-  *
 
-  * x {Big} The Big to round.
 
-  * dp {number} Integer, 0 to MAX_DP inclusive.
 
-  * rm {number} 0, 1, 2 or 3 (DOWN, HALF_UP, HALF_EVEN, UP)
 
-  * [more] {boolean} Whether the result of division was truncated.
 
-  */
 
- function round(x, dp, rm, more) {
 
-   var xc = x.c,
 
-     i = x.e + dp + 1;
 
-   if (i < xc.length) {
 
-     if (rm === 1) {
 
-       // xc[i] is the digit after the digit that may be rounded up.
 
-       more = xc[i] >= 5;
 
-     } else if (rm === 2) {
 
-       more = xc[i] > 5 || xc[i] == 5 &&
 
-         (more || i < 0 || xc[i + 1] !== UNDEFINED || xc[i - 1] & 1);
 
-     } else if (rm === 3) {
 
-       more = more || !!xc[0];
 
-     } else {
 
-       more = false;
 
-       if (rm !== 0) throw Error(INVALID_RM);
 
-     }
 
-     if (i < 1) {
 
-       xc.length = 1;
 
-       if (more) {
 
-         // 1, 0.1, 0.01, 0.001, 0.0001 etc.
 
-         x.e = -dp;
 
-         xc[0] = 1;
 
-       } else {
 
-         // Zero.
 
-         xc[0] = x.e = 0;
 
-       }
 
-     } else {
 
-       // Remove any digits after the required decimal places.
 
-       xc.length = i--;
 
-       // Round up?
 
-       if (more) {
 
-         // Rounding up may mean the previous digit has to be rounded up.
 
-         for (; ++xc[i] > 9;) {
 
-           xc[i] = 0;
 
-           if (!i--) {
 
-             ++x.e;
 
-             xc.unshift(1);
 
-           }
 
-         }
 
-       }
 
-       // Remove trailing zeros.
 
-       for (i = xc.length; !xc[--i];) xc.pop();
 
-     }
 
-   } else if (rm < 0 || rm > 3 || rm !== ~~rm) {
 
-     throw Error(INVALID_RM);
 
-   }
 
-   return x;
 
- }
 
- /*
 
-  * Return a string representing the value of Big x in normal or exponential notation.
 
-  * Handles P.toExponential, P.toFixed, P.toJSON, P.toPrecision, P.toString and P.valueOf.
 
-  *
 
-  * x {Big}
 
-  * id? {number} Caller id.
 
-  *         1 toExponential
 
-  *         2 toFixed
 
-  *         3 toPrecision
 
-  *         4 valueOf
 
-  * n? {number|undefined} Caller's argument.
 
-  * k? {number|undefined}
 
-  */
 
- function stringify(x, id, n, k) {
 
-   var e, s,
 
-     Big = x.constructor,
 
-     z = !x.c[0];
 
-   if (n !== UNDEFINED) {
 
-     if (n !== ~~n || n < (id == 3) || n > MAX_DP) {
 
-       throw Error(id == 3 ? INVALID + 'precision' : INVALID_DP);
 
-     }
 
-     x = new Big(x);
 
-     // The index of the digit that may be rounded up.
 
-     n = k - x.e;
 
-     // Round?
 
-     if (x.c.length > ++k) round(x, n, Big.RM);
 
-     // toFixed: recalculate k as x.e may have changed if value rounded up.
 
-     if (id == 2) k = x.e + n + 1;
 
-     // Append zeros?
 
-     for (; x.c.length < k;) x.c.push(0);
 
-   }
 
-   e = x.e;
 
-   s = x.c.join('');
 
-   n = s.length;
 
-   // Exponential notation?
 
-   if (id != 2 && (id == 1 || id == 3 && k <= e || e <= Big.NE || e >= Big.PE)) {
 
-     s = s.charAt(0) + (n > 1 ? '.' + s.slice(1) : '') + (e < 0 ? 'e' : 'e+') + e;
 
-   // Normal notation.
 
-   } else if (e < 0) {
 
-     for (; ++e;) s = '0' + s;
 
-     s = '0.' + s;
 
-   } else if (e > 0) {
 
-     if (++e > n) for (e -= n; e--;) s += '0';
 
-     else if (e < n) s = s.slice(0, e) + '.' + s.slice(e);
 
-   } else if (n > 1) {
 
-     s = s.charAt(0) + '.' + s.slice(1);
 
-   }
 
-   return x.s < 0 && (!z || id == 4) ? '-' + s : s;
 
- }
 
- // Prototype/instance methods
 
- /*
 
-  * Return a new Big whose value is the absolute value of this Big.
 
-  */
 
- P.abs = function () {
 
-   var x = new this.constructor(this);
 
-   x.s = 1;
 
-   return x;
 
- };
 
- /*
 
-  * Return 1 if the value of this Big is greater than the value of Big y,
 
-  *       -1 if the value of this Big is less than the value of Big y, or
 
-  *        0 if they have the same value.
 
- */
 
- P.cmp = function (y) {
 
-   var isneg,
 
-     x = this,
 
-     xc = x.c,
 
-     yc = (y = new x.constructor(y)).c,
 
-     i = x.s,
 
-     j = y.s,
 
-     k = x.e,
 
-     l = y.e;
 
-   // Either zero?
 
-   if (!xc[0] || !yc[0]) return !xc[0] ? !yc[0] ? 0 : -j : i;
 
-   // Signs differ?
 
-   if (i != j) return i;
 
-   isneg = i < 0;
 
-   // Compare exponents.
 
-   if (k != l) return k > l ^ isneg ? 1 : -1;
 
-   j = (k = xc.length) < (l = yc.length) ? k : l;
 
-   // Compare digit by digit.
 
-   for (i = -1; ++i < j;) {
 
-     if (xc[i] != yc[i]) return xc[i] > yc[i] ^ isneg ? 1 : -1;
 
-   }
 
-   // Compare lengths.
 
-   return k == l ? 0 : k > l ^ isneg ? 1 : -1;
 
- };
 
- /*
 
-  * Return a new Big whose value is the value of this Big divided by the value of Big y, rounded,
 
-  * if necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
 
-  */
 
- P.div = function (y) {
 
-   var x = this,
 
-     Big = x.constructor,
 
-     a = x.c,                  // dividend
 
-     b = (y = new Big(y)).c,   // divisor
 
-     k = x.s == y.s ? 1 : -1,
 
-     dp = Big.DP;
 
-   if (dp !== ~~dp || dp < 0 || dp > MAX_DP) throw Error(INVALID_DP);
 
-   // Divisor is zero?
 
-   if (!b[0]) throw Error(DIV_BY_ZERO);
 
-   // Dividend is 0? Return +-0.
 
-   if (!a[0]) return new Big(k * 0);
 
-   var bl, bt, n, cmp, ri,
 
-     bz = b.slice(),
 
-     ai = bl = b.length,
 
-     al = a.length,
 
-     r = a.slice(0, bl),   // remainder
 
-     rl = r.length,
 
-     q = y,                // quotient
 
-     qc = q.c = [],
 
-     qi = 0,
 
-     d = dp + (q.e = x.e - y.e) + 1;    // number of digits of the result
 
-   q.s = k;
 
-   k = d < 0 ? 0 : d;
 
-   // Create version of divisor with leading zero.
 
-   bz.unshift(0);
 
-   // Add zeros to make remainder as long as divisor.
 
-   for (; rl++ < bl;) r.push(0);
 
-   do {
 
-     // n is how many times the divisor goes into current remainder.
 
-     for (n = 0; n < 10; n++) {
 
-       // Compare divisor and remainder.
 
-       if (bl != (rl = r.length)) {
 
-         cmp = bl > rl ? 1 : -1;
 
-       } else {
 
-         for (ri = -1, cmp = 0; ++ri < bl;) {
 
-           if (b[ri] != r[ri]) {
 
-             cmp = b[ri] > r[ri] ? 1 : -1;
 
-             break;
 
-           }
 
-         }
 
-       }
 
-       // If divisor < remainder, subtract divisor from remainder.
 
-       if (cmp < 0) {
 
-         // Remainder can't be more than 1 digit longer than divisor.
 
-         // Equalise lengths using divisor with extra leading zero?
 
-         for (bt = rl == bl ? b : bz; rl;) {
 
-           if (r[--rl] < bt[rl]) {
 
-             ri = rl;
 
-             for (; ri && !r[--ri];) r[ri] = 9;
 
-             --r[ri];
 
-             r[rl] += 10;
 
-           }
 
-           r[rl] -= bt[rl];
 
-         }
 
-         for (; !r[0];) r.shift();
 
-       } else {
 
-         break;
 
-       }
 
-     }
 
-     // Add the digit n to the result array.
 
-     qc[qi++] = cmp ? n : ++n;
 
-     // Update the remainder.
 
-     if (r[0] && cmp) r[rl] = a[ai] || 0;
 
-     else r = [a[ai]];
 
-   } while ((ai++ < al || r[0] !== UNDEFINED) && k--);
 
-   // Leading zero? Do not remove if result is simply zero (qi == 1).
 
-   if (!qc[0] && qi != 1) {
 
-     // There can't be more than one zero.
 
-     qc.shift();
 
-     q.e--;
 
-   }
 
-   // Round?
 
-   if (qi > d) round(q, dp, Big.RM, r[0] !== UNDEFINED);
 
-   return q;
 
- };
 
- /*
 
-  * Return true if the value of this Big is equal to the value of Big y, otherwise return false.
 
-  */
 
- P.eq = function (y) {
 
-   return !this.cmp(y);
 
- };
 
- /*
 
-  * Return true if the value of this Big is greater than the value of Big y, otherwise return
 
-  * false.
 
-  */
 
- P.gt = function (y) {
 
-   return this.cmp(y) > 0;
 
- };
 
- /*
 
-  * Return true if the value of this Big is greater than or equal to the value of Big y, otherwise
 
-  * return false.
 
-  */
 
- P.gte = function (y) {
 
-   return this.cmp(y) > -1;
 
- };
 
- /*
 
-  * Return true if the value of this Big is less than the value of Big y, otherwise return false.
 
-  */
 
- P.lt = function (y) {
 
-   return this.cmp(y) < 0;
 
- };
 
- /*
 
-  * Return true if the value of this Big is less than or equal to the value of Big y, otherwise
 
-  * return false.
 
-  */
 
- P.lte = function (y) {
 
-   return this.cmp(y) < 1;
 
- };
 
- /*
 
-  * Return a new Big whose value is the value of this Big minus the value of Big y.
 
-  */
 
- P.minus = P.sub = function (y) {
 
-   var i, j, t, xlty,
 
-     x = this,
 
-     Big = x.constructor,
 
-     a = x.s,
 
-     b = (y = new Big(y)).s;
 
-   // Signs differ?
 
-   if (a != b) {
 
-     y.s = -b;
 
-     return x.plus(y);
 
-   }
 
-   var xc = x.c.slice(),
 
-     xe = x.e,
 
-     yc = y.c,
 
-     ye = y.e;
 
-   // Either zero?
 
-   if (!xc[0] || !yc[0]) {
 
-     // y is non-zero? x is non-zero? Or both are zero.
 
-     return yc[0] ? (y.s = -b, y) : new Big(xc[0] ? x : 0);
 
-   }
 
-   // Determine which is the bigger number. Prepend zeros to equalise exponents.
 
-   if (a = xe - ye) {
 
-     if (xlty = a < 0) {
 
-       a = -a;
 
-       t = xc;
 
-     } else {
 
-       ye = xe;
 
-       t = yc;
 
-     }
 
-     t.reverse();
 
-     for (b = a; b--;) t.push(0);
 
-     t.reverse();
 
-   } else {
 
-     // Exponents equal. Check digit by digit.
 
-     j = ((xlty = xc.length < yc.length) ? xc : yc).length;
 
-     for (a = b = 0; b < j; b++) {
 
-       if (xc[b] != yc[b]) {
 
-         xlty = xc[b] < yc[b];
 
-         break;
 
-       }
 
-     }
 
-   }
 
-   // x < y? Point xc to the array of the bigger number.
 
-   if (xlty) {
 
-     t = xc;
 
-     xc = yc;
 
-     yc = t;
 
-     y.s = -y.s;
 
-   }
 
-   /*
 
-    * Append zeros to xc if shorter. No need to add zeros to yc if shorter as subtraction only
 
-    * needs to start at yc.length.
 
-    */
 
-   if ((b = (j = yc.length) - (i = xc.length)) > 0) for (; b--;) xc[i++] = 0;
 
-   // Subtract yc from xc.
 
-   for (b = i; j > a;) {
 
-     if (xc[--j] < yc[j]) {
 
-       for (i = j; i && !xc[--i];) xc[i] = 9;
 
-       --xc[i];
 
-       xc[j] += 10;
 
-     }
 
-     xc[j] -= yc[j];
 
-   }
 
-   // Remove trailing zeros.
 
-   for (; xc[--b] === 0;) xc.pop();
 
-   // Remove leading zeros and adjust exponent accordingly.
 
-   for (; xc[0] === 0;) {
 
-     xc.shift();
 
-     --ye;
 
-   }
 
-   if (!xc[0]) {
 
-     // n - n = +0
 
-     y.s = 1;
 
-     // Result must be zero.
 
-     xc = [ye = 0];
 
-   }
 
-   y.c = xc;
 
-   y.e = ye;
 
-   return y;
 
- };
 
- /*
 
-  * Return a new Big whose value is the value of this Big modulo the value of Big y.
 
-  */
 
- P.mod = function (y) {
 
-   var ygtx,
 
-     x = this,
 
-     Big = x.constructor,
 
-     a = x.s,
 
-     b = (y = new Big(y)).s;
 
-   if (!y.c[0]) throw Error(DIV_BY_ZERO);
 
-   x.s = y.s = 1;
 
-   ygtx = y.cmp(x) == 1;
 
-   x.s = a;
 
-   y.s = b;
 
-   if (ygtx) return new Big(x);
 
-   a = Big.DP;
 
-   b = Big.RM;
 
-   Big.DP = Big.RM = 0;
 
-   x = x.div(y);
 
-   Big.DP = a;
 
-   Big.RM = b;
 
-   return this.minus(x.times(y));
 
- };
 
- /*
 
-  * Return a new Big whose value is the value of this Big plus the value of Big y.
 
-  */
 
- P.plus = P.add = function (y) {
 
-   var t,
 
-     x = this,
 
-     Big = x.constructor,
 
-     a = x.s,
 
-     b = (y = new Big(y)).s;
 
-   // Signs differ?
 
-   if (a != b) {
 
-     y.s = -b;
 
-     return x.minus(y);
 
-   }
 
-   var xe = x.e,
 
-     xc = x.c,
 
-     ye = y.e,
 
-     yc = y.c;
 
-   // Either zero? y is non-zero? x is non-zero? Or both are zero.
 
-   if (!xc[0] || !yc[0]) return yc[0] ? y : new Big(xc[0] ? x : a * 0);
 
-   xc = xc.slice();
 
-   // Prepend zeros to equalise exponents.
 
-   // Note: reverse faster than unshifts.
 
-   if (a = xe - ye) {
 
-     if (a > 0) {
 
-       ye = xe;
 
-       t = yc;
 
-     } else {
 
-       a = -a;
 
-       t = xc;
 
-     }
 
-     t.reverse();
 
-     for (; a--;) t.push(0);
 
-     t.reverse();
 
-   }
 
-   // Point xc to the longer array.
 
-   if (xc.length - yc.length < 0) {
 
-     t = yc;
 
-     yc = xc;
 
-     xc = t;
 
-   }
 
-   a = yc.length;
 
-   // Only start adding at yc.length - 1 as the further digits of xc can be left as they are.
 
-   for (b = 0; a; xc[a] %= 10) b = (xc[--a] = xc[a] + yc[a] + b) / 10 | 0;
 
-   // No need to check for zero, as +x + +y != 0 && -x + -y != 0
 
-   if (b) {
 
-     xc.unshift(b);
 
-     ++ye;
 
-   }
 
-   // Remove trailing zeros.
 
-   for (a = xc.length; xc[--a] === 0;) xc.pop();
 
-   y.c = xc;
 
-   y.e = ye;
 
-   return y;
 
- };
 
- /*
 
-  * Return a Big whose value is the value of this Big raised to the power n.
 
-  * If n is negative, round to a maximum of Big.DP decimal places using rounding
 
-  * mode Big.RM.
 
-  *
 
-  * n {number} Integer, -MAX_POWER to MAX_POWER inclusive.
 
-  */
 
- P.pow = function (n) {
 
-   var x = this,
 
-     one = new x.constructor(1),
 
-     y = one,
 
-     isneg = n < 0;
 
-   if (n !== ~~n || n < -MAX_POWER || n > MAX_POWER) throw Error(INVALID + 'exponent');
 
-   if (isneg) n = -n;
 
-   for (;;) {
 
-     if (n & 1) y = y.times(x);
 
-     n >>= 1;
 
-     if (!n) break;
 
-     x = x.times(x);
 
-   }
 
-   return isneg ? one.div(y) : y;
 
- };
 
- /*
 
-  * Return a new Big whose value is the value of this Big rounded using rounding mode rm
 
-  * to a maximum of dp decimal places, or, if dp is negative, to an integer which is a
 
-  * multiple of 10**-dp.
 
-  * If dp is not specified, round to 0 decimal places.
 
-  * If rm is not specified, use Big.RM.
 
-  *
 
-  * dp? {number} Integer, -MAX_DP to MAX_DP inclusive.
 
-  * rm? 0, 1, 2 or 3 (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_UP)
 
-  */
 
- P.round = function (dp, rm) {
 
-   var Big = this.constructor;
 
-   if (dp === UNDEFINED) dp = 0;
 
-   else if (dp !== ~~dp || dp < -MAX_DP || dp > MAX_DP) throw Error(INVALID_DP);
 
-   return round(new Big(this), dp, rm === UNDEFINED ? Big.RM : rm);
 
- };
 
- /*
 
-  * Return a new Big whose value is the square root of the value of this Big, rounded, if
 
-  * necessary, to a maximum of Big.DP decimal places using rounding mode Big.RM.
 
-  */
 
- P.sqrt = function () {
 
-   var r, c, t,
 
-     x = this,
 
-     Big = x.constructor,
 
-     s = x.s,
 
-     e = x.e,
 
-     half = new Big(0.5);
 
-   // Zero?
 
-   if (!x.c[0]) return new Big(x);
 
-   // Negative?
 
-   if (s < 0) throw Error(NAME + 'No square root');
 
-   // Estimate.
 
-   s = Math.sqrt(x + '');
 
-   // Math.sqrt underflow/overflow?
 
-   // Re-estimate: pass x coefficient to Math.sqrt as integer, then adjust the result exponent.
 
-   if (s === 0 || s === 1 / 0) {
 
-     c = x.c.join('');
 
-     if (!(c.length + e & 1)) c += '0';
 
-     s = Math.sqrt(c);
 
-     e = ((e + 1) / 2 | 0) - (e < 0 || e & 1);
 
-     r = new Big((s == 1 / 0 ? '1e' : (s = s.toExponential()).slice(0, s.indexOf('e') + 1)) + e);
 
-   } else {
 
-     r = new Big(s);
 
-   }
 
-   e = r.e + (Big.DP += 4);
 
-   // Newton-Raphson iteration.
 
-   do {
 
-     t = r;
 
-     r = half.times(t.plus(x.div(t)));
 
-   } while (t.c.slice(0, e).join('') !== r.c.slice(0, e).join(''));
 
-   return round(r, Big.DP -= 4, Big.RM);
 
- };
 
- /*
 
-  * Return a new Big whose value is the value of this Big times the value of Big y.
 
-  */
 
- P.times = P.mul = function (y) {
 
-   var c,
 
-     x = this,
 
-     Big = x.constructor,
 
-     xc = x.c,
 
-     yc = (y = new Big(y)).c,
 
-     a = xc.length,
 
-     b = yc.length,
 
-     i = x.e,
 
-     j = y.e;
 
-   // Determine sign of result.
 
-   y.s = x.s == y.s ? 1 : -1;
 
-   // Return signed 0 if either 0.
 
-   if (!xc[0] || !yc[0]) return new Big(y.s * 0);
 
-   // Initialise exponent of result as x.e + y.e.
 
-   y.e = i + j;
 
-   // If array xc has fewer digits than yc, swap xc and yc, and lengths.
 
-   if (a < b) {
 
-     c = xc;
 
-     xc = yc;
 
-     yc = c;
 
-     j = a;
 
-     a = b;
 
-     b = j;
 
-   }
 
-   // Initialise coefficient array of result with zeros.
 
-   for (c = new Array(j = a + b); j--;) c[j] = 0;
 
-   // Multiply.
 
-   // i is initially xc.length.
 
-   for (i = b; i--;) {
 
-     b = 0;
 
-     // a is yc.length.
 
-     for (j = a + i; j > i;) {
 
-       // Current sum of products at this digit position, plus carry.
 
-       b = c[j] + yc[i] * xc[j - i - 1] + b;
 
-       c[j--] = b % 10;
 
-       // carry
 
-       b = b / 10 | 0;
 
-     }
 
-     c[j] = (c[j] + b) % 10;
 
-   }
 
-   // Increment result exponent if there is a final carry, otherwise remove leading zero.
 
-   if (b) ++y.e;
 
-   else c.shift();
 
-   // Remove trailing zeros.
 
-   for (i = c.length; !c[--i];) c.pop();
 
-   y.c = c;
 
-   return y;
 
- };
 
- /*
 
-  * Return a string representing the value of this Big in exponential notation to dp fixed decimal
 
-  * places and rounded using Big.RM.
 
-  *
 
-  * dp? {number} Integer, 0 to MAX_DP inclusive.
 
-  */
 
- P.toExponential = function (dp) {
 
-   return stringify(this, 1, dp, dp);
 
- };
 
- /*
 
-  * Return a string representing the value of this Big in normal notation to dp fixed decimal
 
-  * places and rounded using Big.RM.
 
-  *
 
-  * dp? {number} Integer, 0 to MAX_DP inclusive.
 
-  *
 
-  * (-0).toFixed(0) is '0', but (-0.1).toFixed(0) is '-0'.
 
-  * (-0).toFixed(1) is '0.0', but (-0.01).toFixed(1) is '-0.0'.
 
-  */
 
- P.toFixed = function (dp) {
 
-   return stringify(this, 2, dp, this.e + dp);
 
- };
 
- /*
 
-  * Return a string representing the value of this Big rounded to sd significant digits using
 
-  * Big.RM. Use exponential notation if sd is less than the number of digits necessary to represent
 
-  * the integer part of the value in normal notation.
 
-  *
 
-  * sd {number} Integer, 1 to MAX_DP inclusive.
 
-  */
 
- P.toPrecision = function (sd) {
 
-   return stringify(this, 3, sd, sd - 1);
 
- };
 
- /*
 
-  * Return a string representing the value of this Big.
 
-  * Return exponential notation if this Big has a positive exponent equal to or greater than
 
-  * Big.PE, or a negative exponent equal to or less than Big.NE.
 
-  * Omit the sign for negative zero.
 
-  */
 
- P.toString = function () {
 
-   return stringify(this);
 
- };
 
- /*
 
-  * Return a string representing the value of this Big.
 
-  * Return exponential notation if this Big has a positive exponent equal to or greater than
 
-  * Big.PE, or a negative exponent equal to or less than Big.NE.
 
-  * Include the sign for negative zero.
 
-  */
 
- P.valueOf = P.toJSON = function () {
 
-   return stringify(this, 4);
 
- };
 
- // Export
 
- export var Big = _Big_();
 
- export default Big;
 
 
  |