| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | /** * RSA Key Generation Worker. * * @author Dave Longley * * Copyright (c) 2013 Digital Bazaar, Inc. */// worker is built using CommonJS syntax to include all code in one worker file//importScripts('jsbn.js');var forge = require('./forge');require('./jsbn');// prime constantsvar LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];var BigInteger = forge.jsbn.BigInteger;var BIG_TWO = new BigInteger(null);BIG_TWO.fromInt(2);self.addEventListener('message', function(e) {  var result = findPrime(e.data);  self.postMessage(result);});// start receiving ranges to checkself.postMessage({found: false});// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];function findPrime(data) {  // TODO: abstract based on data.algorithm (PRIMEINC vs. others)  // create BigInteger from given random bytes  var num = new BigInteger(data.hex, 16);  /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The    number we are given is always aligned at 30k + 1. Each time the number is    determined not to be prime we add to get to the next 'i', eg: if the number    was at 30k + 1 we add 6. */  var deltaIdx = 0;  // find nearest prime  var workLoad = data.workLoad;  for(var i = 0; i < workLoad; ++i) {    // do primality test    if(isProbablePrime(num)) {      return {found: true, prime: num.toString(16)};    }    // get next potential prime    num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);  }  return {found: false};}function isProbablePrime(n) {  // divide by low primes, ignore even checks, etc (n alread aligned properly)  var i = 1;  while(i < LOW_PRIMES.length) {    var m = LOW_PRIMES[i];    var j = i + 1;    while(j < LOW_PRIMES.length && m < LP_LIMIT) {      m *= LOW_PRIMES[j++];    }    m = n.modInt(m);    while(i < j) {      if(m % LOW_PRIMES[i++] === 0) {        return false;      }    }  }  return runMillerRabin(n);}// HAC 4.24, Miller-Rabinfunction runMillerRabin(n) {  // n1 = n - 1  var n1 = n.subtract(BigInteger.ONE);  // get s and d such that n1 = 2^s * d  var s = n1.getLowestSetBit();  if(s <= 0) {    return false;  }  var d = n1.shiftRight(s);  var k = _getMillerRabinTests(n.bitLength());  var prng = getPrng();  var a;  for(var i = 0; i < k; ++i) {    // select witness 'a' at random from between 1 and n - 1    do {      a = new BigInteger(n.bitLength(), prng);    } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);    /* See if 'a' is a composite witness. */    // x = a^d mod n    var x = a.modPow(d, n);    // probably prime    if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {      continue;    }    var j = s;    while(--j) {      // x = x^2 mod a      x = x.modPowInt(2, n);      // 'n' is composite because no previous x == -1 mod n      if(x.compareTo(BigInteger.ONE) === 0) {        return false;      }      // x == -1 mod n, so probably prime      if(x.compareTo(n1) === 0) {        break;      }    }    // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime    if(j === 0) {      return false;    }  }  return true;}// get pseudo random number generatorfunction getPrng() {  // create prng with api that matches BigInteger secure random  return {    // x is an array to fill with bytes    nextBytes: function(x) {      for(var i = 0; i < x.length; ++i) {        x[i] = Math.floor(Math.random() * 0xFF);      }    }  };}/** * Returns the required number of Miller-Rabin tests to generate a * prime with an error probability of (1/2)^80. * * See Handbook of Applied Cryptography Chapter 4, Table 4.4. * * @param bits the bit size. * * @return the required number of iterations. */function _getMillerRabinTests(bits) {  if(bits <= 100) return 27;  if(bits <= 150) return 18;  if(bits <= 200) return 15;  if(bits <= 250) return 12;  if(bits <= 300) return 9;  if(bits <= 350) return 8;  if(bits <= 400) return 7;  if(bits <= 500) return 6;  if(bits <= 600) return 5;  if(bits <= 800) return 4;  if(bits <= 1250) return 3;  return 2;}
 |