| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 | /** * Password-Based Key-Derivation Function #2 implementation. * * See RFC 2898 for details. * * @author Dave Longley * * Copyright (c) 2010-2013 Digital Bazaar, Inc. */var forge = require('./forge');require('./hmac');require('./md');require('./util');var pkcs5 = forge.pkcs5 = forge.pkcs5 || {};var crypto;if(forge.util.isNodejs && !forge.options.usePureJavaScript) {  crypto = require('crypto');}/** * Derives a key from a password. * * @param p the password as a binary-encoded string of bytes. * @param s the salt as a binary-encoded string of bytes. * @param c the iteration count, a positive integer. * @param dkLen the intended length, in bytes, of the derived key, *          (max: 2^32 - 1) * hash length of the PRF. * @param [md] the message digest (or algorithm identifier as a string) to use *          in the PRF, defaults to SHA-1. * @param [callback(err, key)] presence triggers asynchronous version, called *          once the operation completes. * * @return the derived key, as a binary-encoded string of bytes, for the *           synchronous version (if no callback is specified). */module.exports = forge.pbkdf2 = pkcs5.pbkdf2 = function(  p, s, c, dkLen, md, callback) {  if(typeof md === 'function') {    callback = md;    md = null;  }  // use native implementation if possible and not disabled, note that  // some node versions only support SHA-1, others allow digest to be changed  if(forge.util.isNodejs && !forge.options.usePureJavaScript &&    crypto.pbkdf2 && (md === null || typeof md !== 'object') &&    (crypto.pbkdf2Sync.length > 4 || (!md || md === 'sha1'))) {    if(typeof md !== 'string') {      // default prf to SHA-1      md = 'sha1';    }    p = Buffer.from(p, 'binary');    s = Buffer.from(s, 'binary');    if(!callback) {      if(crypto.pbkdf2Sync.length === 4) {        return crypto.pbkdf2Sync(p, s, c, dkLen).toString('binary');      }      return crypto.pbkdf2Sync(p, s, c, dkLen, md).toString('binary');    }    if(crypto.pbkdf2Sync.length === 4) {      return crypto.pbkdf2(p, s, c, dkLen, function(err, key) {        if(err) {          return callback(err);        }        callback(null, key.toString('binary'));      });    }    return crypto.pbkdf2(p, s, c, dkLen, md, function(err, key) {      if(err) {        return callback(err);      }      callback(null, key.toString('binary'));    });  }  if(typeof md === 'undefined' || md === null) {    // default prf to SHA-1    md = 'sha1';  }  if(typeof md === 'string') {    if(!(md in forge.md.algorithms)) {      throw new Error('Unknown hash algorithm: ' + md);    }    md = forge.md[md].create();  }  var hLen = md.digestLength;  /* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and    stop. */  if(dkLen > (0xFFFFFFFF * hLen)) {    var err = new Error('Derived key is too long.');    if(callback) {      return callback(err);    }    throw err;  }  /* 2. Let len be the number of hLen-octet blocks in the derived key,    rounding up, and let r be the number of octets in the last    block:    len = CEIL(dkLen / hLen),    r = dkLen - (len - 1) * hLen. */  var len = Math.ceil(dkLen / hLen);  var r = dkLen - (len - 1) * hLen;  /* 3. For each block of the derived key apply the function F defined    below to the password P, the salt S, the iteration count c, and    the block index to compute the block:    T_1 = F(P, S, c, 1),    T_2 = F(P, S, c, 2),    ...    T_len = F(P, S, c, len),    where the function F is defined as the exclusive-or sum of the    first c iterates of the underlying pseudorandom function PRF    applied to the password P and the concatenation of the salt S    and the block index i:    F(P, S, c, i) = u_1 XOR u_2 XOR ... XOR u_c    where    u_1 = PRF(P, S || INT(i)),    u_2 = PRF(P, u_1),    ...    u_c = PRF(P, u_{c-1}).    Here, INT(i) is a four-octet encoding of the integer i, most    significant octet first. */  var prf = forge.hmac.create();  prf.start(md, p);  var dk = '';  var xor, u_c, u_c1;  // sync version  if(!callback) {    for(var i = 1; i <= len; ++i) {      // PRF(P, S || INT(i)) (first iteration)      prf.start(null, null);      prf.update(s);      prf.update(forge.util.int32ToBytes(i));      xor = u_c1 = prf.digest().getBytes();      // PRF(P, u_{c-1}) (other iterations)      for(var j = 2; j <= c; ++j) {        prf.start(null, null);        prf.update(u_c1);        u_c = prf.digest().getBytes();        // F(p, s, c, i)        xor = forge.util.xorBytes(xor, u_c, hLen);        u_c1 = u_c;      }      /* 4. Concatenate the blocks and extract the first dkLen octets to        produce a derived key DK:        DK = T_1 || T_2 ||  ...  || T_len<0..r-1> */      dk += (i < len) ? xor : xor.substr(0, r);    }    /* 5. Output the derived key DK. */    return dk;  }  // async version  var i = 1, j;  function outer() {    if(i > len) {      // done      return callback(null, dk);    }    // PRF(P, S || INT(i)) (first iteration)    prf.start(null, null);    prf.update(s);    prf.update(forge.util.int32ToBytes(i));    xor = u_c1 = prf.digest().getBytes();    // PRF(P, u_{c-1}) (other iterations)    j = 2;    inner();  }  function inner() {    if(j <= c) {      prf.start(null, null);      prf.update(u_c1);      u_c = prf.digest().getBytes();      // F(p, s, c, i)      xor = forge.util.xorBytes(xor, u_c, hLen);      u_c1 = u_c;      ++j;      return forge.util.setImmediate(inner);    }    /* 4. Concatenate the blocks and extract the first dkLen octets to      produce a derived key DK:      DK = T_1 || T_2 ||  ...  || T_len<0..r-1> */    dk += (i < len) ? xor : xor.substr(0, r);    ++i;    outer();  }  outer();};
 |