| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 | 
							- 'use strict';
 
- var regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/,
 
-     regTransformSplit = /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/,
 
-     regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
 
- /**
 
-  * Convert transform string to JS representation.
 
-  *
 
-  * @param {String} transformString input string
 
-  * @param {Object} params plugin params
 
-  * @return {Array} output array
 
-  */
 
- exports.transform2js = function(transformString) {
 
-         // JS representation of the transform data
 
-     var transforms = [],
 
-         // current transform context
 
-         current;
 
-     // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
 
-     transformString.split(regTransformSplit).forEach(function(item) {
 
-         /*jshint -W084 */
 
-         var num;
 
-         if (item) {
 
-             // if item is a translate function
 
-             if (regTransformTypes.test(item)) {
 
-                 // then collect it and change current context
 
-                 transforms.push(current = { name: item });
 
-             // else if item is data
 
-             } else {
 
-                 // then split it into [10, 50] and collect as context.data
 
-                 while (num = regNumericValues.exec(item)) {
 
-                     num = Number(num);
 
-                     if (current.data)
 
-                         current.data.push(num);
 
-                     else
 
-                         current.data = [num];
 
-                 }
 
-             }
 
-         }
 
-     });
 
-     // return empty array if broken transform (no data)
 
-     return current && current.data ? transforms : [];
 
- };
 
- /**
 
-  * Multiply transforms into one.
 
-  *
 
-  * @param {Array} input transforms array
 
-  * @return {Array} output matrix array
 
-  */
 
- exports.transformsMultiply = function(transforms) {
 
-     // convert transforms objects to the matrices
 
-     transforms = transforms.map(function(transform) {
 
-         if (transform.name === 'matrix') {
 
-             return transform.data;
 
-         }
 
-         return transformToMatrix(transform);
 
-     });
 
-     // multiply all matrices into one
 
-     transforms = {
 
-         name: 'matrix',
 
-         data: transforms.length > 0 ? transforms.reduce(multiplyTransformMatrices) : []
 
-     };
 
-     return transforms;
 
- };
 
- /**
 
-  * Do math like a schoolgirl.
 
-  *
 
-  * @type {Object}
 
-  */
 
- var mth = exports.mth = {
 
-     rad: function(deg) {
 
-         return deg * Math.PI / 180;
 
-     },
 
-     deg: function(rad) {
 
-         return rad * 180 / Math.PI;
 
-     },
 
-     cos: function(deg) {
 
-         return Math.cos(this.rad(deg));
 
-     },
 
-     acos: function(val, floatPrecision) {
 
-         return +(this.deg(Math.acos(val)).toFixed(floatPrecision));
 
-     },
 
-     sin: function(deg) {
 
-         return Math.sin(this.rad(deg));
 
-     },
 
-     asin: function(val, floatPrecision) {
 
-         return +(this.deg(Math.asin(val)).toFixed(floatPrecision));
 
-     },
 
-     tan: function(deg) {
 
-         return Math.tan(this.rad(deg));
 
-     },
 
-     atan: function(val, floatPrecision) {
 
-         return +(this.deg(Math.atan(val)).toFixed(floatPrecision));
 
-     }
 
- };
 
- /**
 
-  * Decompose matrix into simple transforms. See
 
-  * http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
 
-  *
 
-  * @param {Object} data matrix transform object
 
-  * @return {Object|Array} transforms array or original transform object
 
-  */
 
- exports.matrixToTransform = function(transform, params) {
 
-     var floatPrecision = params.floatPrecision,
 
-         data = transform.data,
 
-         transforms = [],
 
-         sx = +Math.hypot(data[0], data[1]).toFixed(params.transformPrecision),
 
-         sy = +((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(params.transformPrecision),
 
-         colsSum = data[0] * data[2] + data[1] * data[3],
 
-         rowsSum = data[0] * data[1] + data[2] * data[3],
 
-         scaleBefore = rowsSum != 0 || sx == sy;
 
-     // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
 
-     if (data[4] || data[5]) {
 
-         transforms.push({ name: 'translate', data: data.slice(4, data[5] ? 6 : 5) });
 
-     }
 
-     // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
 
-     if (!data[1] && data[2]) {
 
-         transforms.push({ name: 'skewX', data: [mth.atan(data[2] / sy, floatPrecision)] });
 
-     // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
 
-     } else if (data[1] && !data[2]) {
 
-         transforms.push({ name: 'skewY', data: [mth.atan(data[1] / data[0], floatPrecision)] });
 
-         sx = data[0];
 
-         sy = data[3];
 
-     // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
 
-     // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
 
-     } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
 
-         if (!scaleBefore) {
 
-             sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
 
-             sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
 
-             transforms.push({ name: 'scale', data: [sx, sy] });
 
-         }
 
-         var angle = Math.min(Math.max(-1, data[0] / sx), 1),
 
-             rotate = [mth.acos(angle, floatPrecision) * ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1)];
 
-         if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
 
-         if (rowsSum && colsSum) transforms.push({
 
-             name: 'skewX',
 
-             data: [mth.atan(colsSum / (sx * sx), floatPrecision)]
 
-         });
 
-         // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
 
-         if (rotate[0] && (data[4] || data[5])) {
 
-             transforms.shift();
 
-             var cos = data[0] / sx,
 
-                 sin = data[1] / (scaleBefore ? sx : sy),
 
-                 x = data[4] * (scaleBefore || sy),
 
-                 y = data[5] * (scaleBefore || sx),
 
-                 denom = (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) * (scaleBefore || sx * sy);
 
-             rotate.push(((1 - cos) * x - sin * y) / denom);
 
-             rotate.push(((1 - cos) * y + sin * x) / denom);
 
-         }
 
-     // Too many transformations, return original matrix if it isn't just a scale/translate
 
-     } else if (data[1] || data[2]) {
 
-         return transform;
 
-     }
 
-     if (scaleBefore && (sx != 1 || sy != 1) || !transforms.length) transforms.push({
 
-         name: 'scale',
 
-         data: sx == sy ? [sx] : [sx, sy]
 
-     });
 
-     return transforms;
 
- };
 
- /**
 
-  * Convert transform to the matrix data.
 
-  *
 
-  * @param {Object} transform transform object
 
-  * @return {Array} matrix data
 
-  */
 
- function transformToMatrix(transform) {
 
-     if (transform.name === 'matrix') return transform.data;
 
-     var matrix;
 
-     switch (transform.name) {
 
-         case 'translate':
 
-             // [1, 0, 0, 1, tx, ty]
 
-             matrix = [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
 
-             break;
 
-         case 'scale':
 
-             // [sx, 0, 0, sy, 0, 0]
 
-             matrix = [transform.data[0], 0, 0, transform.data[1] || transform.data[0], 0, 0];
 
-             break;
 
-         case 'rotate':
 
-             // [cos(a), sin(a), -sin(a), cos(a), x, y]
 
-             var cos = mth.cos(transform.data[0]),
 
-                 sin = mth.sin(transform.data[0]),
 
-                 cx = transform.data[1] || 0,
 
-                 cy = transform.data[2] || 0;
 
-             matrix = [cos, sin, -sin, cos, (1 - cos) * cx + sin * cy, (1 - cos) * cy - sin * cx];
 
-             break;
 
-         case 'skewX':
 
-             // [1, 0, tan(a), 1, 0, 0]
 
-             matrix = [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
 
-             break;
 
-         case 'skewY':
 
-             // [1, tan(a), 0, 1, 0, 0]
 
-             matrix = [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
 
-             break;
 
-     }
 
-     return matrix;
 
- }
 
- /**
 
-  * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
 
-  * by the transformation matrix and use a singular value decomposition to represent in a form
 
-  * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
 
-  * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
 
-  *
 
-  * @param {Array} arc [a, b, rotation in deg]
 
-  * @param {Array} transform transformation matrix
 
-  * @return {Array} arc transformed input arc
 
-  */
 
- exports.transformArc = function(arc, transform) {
 
-     var a = arc[0],
 
-         b = arc[1],
 
-         rot = arc[2] * Math.PI / 180,
 
-         cos = Math.cos(rot),
 
-         sin = Math.sin(rot),
 
-         h = Math.pow(arc[5] * cos + arc[6] * sin, 2) / (4 * a * a) +
 
-             Math.pow(arc[6] * cos - arc[5] * sin, 2) / (4 * b * b);
 
-     if (h > 1) {
 
-         h = Math.sqrt(h);
 
-         a *= h;
 
-         b *= h;
 
-     }
 
-     var ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0],
 
-         m = multiplyTransformMatrices(transform, ellipse),
 
-         // Decompose the new ellipse matrix
 
-         lastCol = m[2] * m[2] + m[3] * m[3],
 
-         squareSum = m[0] * m[0] + m[1] * m[1] + lastCol,
 
-         root = Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
 
-     if (!root) { // circle
 
-         arc[0] = arc[1] = Math.sqrt(squareSum / 2);
 
-         arc[2] = 0;
 
-     } else {
 
-         var majorAxisSqr = (squareSum + root) / 2,
 
-             minorAxisSqr = (squareSum - root) / 2,
 
-             major = Math.abs(majorAxisSqr - lastCol) > 1e-6,
 
-             sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol,
 
-             rowsSum = m[0] * m[2] + m[1] * m[3],
 
-             term1 = m[0] * sub + m[2] * rowsSum,
 
-             term2 = m[1] * sub + m[3] * rowsSum;
 
-         arc[0] = Math.sqrt(majorAxisSqr);
 
-         arc[1] = Math.sqrt(minorAxisSqr);
 
-         arc[2] = ((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
 
-             Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) * 180 / Math.PI;
 
-     }
 
-     if ((transform[0] < 0) !== (transform[3] < 0)) {
 
-         // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
 
-         arc[4] = 1 - arc[4];
 
-     }
 
-     return arc;
 
- };
 
- /**
 
-  * Multiply transformation matrices.
 
-  *
 
-  * @param {Array} a matrix A data
 
-  * @param {Array} b matrix B data
 
-  * @return {Array} result
 
-  */
 
- function multiplyTransformMatrices(a, b) {
 
-     return [
 
-         a[0] * b[0] + a[2] * b[1],
 
-         a[1] * b[0] + a[3] * b[1],
 
-         a[0] * b[2] + a[2] * b[3],
 
-         a[1] * b[2] + a[3] * b[3],
 
-         a[0] * b[4] + a[2] * b[5] + a[4],
 
-         a[1] * b[4] + a[3] * b[5] + a[5]
 
-     ];
 
- }
 
 
  |