| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091 | 
							- /**
 
-  * Advanced Encryption Standard (AES) implementation.
 
-  *
 
-  * This implementation is based on the public domain library 'jscrypto' which
 
-  * was written by:
 
-  *
 
-  * Emily Stark (estark@stanford.edu)
 
-  * Mike Hamburg (mhamburg@stanford.edu)
 
-  * Dan Boneh (dabo@cs.stanford.edu)
 
-  *
 
-  * Parts of this code are based on the OpenSSL implementation of AES:
 
-  * http://www.openssl.org
 
-  *
 
-  * @author Dave Longley
 
-  *
 
-  * Copyright (c) 2010-2014 Digital Bazaar, Inc.
 
-  */
 
- var forge = require('./forge');
 
- require('./cipher');
 
- require('./cipherModes');
 
- require('./util');
 
- /* AES API */
 
- module.exports = forge.aes = forge.aes || {};
 
- /**
 
-  * Deprecated. Instead, use:
 
-  *
 
-  * var cipher = forge.cipher.createCipher('AES-<mode>', key);
 
-  * cipher.start({iv: iv});
 
-  *
 
-  * Creates an AES cipher object to encrypt data using the given symmetric key.
 
-  * The output will be stored in the 'output' member of the returned cipher.
 
-  *
 
-  * The key and iv may be given as a string of bytes, an array of bytes,
 
-  * a byte buffer, or an array of 32-bit words.
 
-  *
 
-  * @param key the symmetric key to use.
 
-  * @param iv the initialization vector to use.
 
-  * @param output the buffer to write to, null to create one.
 
-  * @param mode the cipher mode to use (default: 'CBC').
 
-  *
 
-  * @return the cipher.
 
-  */
 
- forge.aes.startEncrypting = function(key, iv, output, mode) {
 
-   var cipher = _createCipher({
 
-     key: key,
 
-     output: output,
 
-     decrypt: false,
 
-     mode: mode
 
-   });
 
-   cipher.start(iv);
 
-   return cipher;
 
- };
 
- /**
 
-  * Deprecated. Instead, use:
 
-  *
 
-  * var cipher = forge.cipher.createCipher('AES-<mode>', key);
 
-  *
 
-  * Creates an AES cipher object to encrypt data using the given symmetric key.
 
-  *
 
-  * The key may be given as a string of bytes, an array of bytes, a
 
-  * byte buffer, or an array of 32-bit words.
 
-  *
 
-  * @param key the symmetric key to use.
 
-  * @param mode the cipher mode to use (default: 'CBC').
 
-  *
 
-  * @return the cipher.
 
-  */
 
- forge.aes.createEncryptionCipher = function(key, mode) {
 
-   return _createCipher({
 
-     key: key,
 
-     output: null,
 
-     decrypt: false,
 
-     mode: mode
 
-   });
 
- };
 
- /**
 
-  * Deprecated. Instead, use:
 
-  *
 
-  * var decipher = forge.cipher.createDecipher('AES-<mode>', key);
 
-  * decipher.start({iv: iv});
 
-  *
 
-  * Creates an AES cipher object to decrypt data using the given symmetric key.
 
-  * The output will be stored in the 'output' member of the returned cipher.
 
-  *
 
-  * The key and iv may be given as a string of bytes, an array of bytes,
 
-  * a byte buffer, or an array of 32-bit words.
 
-  *
 
-  * @param key the symmetric key to use.
 
-  * @param iv the initialization vector to use.
 
-  * @param output the buffer to write to, null to create one.
 
-  * @param mode the cipher mode to use (default: 'CBC').
 
-  *
 
-  * @return the cipher.
 
-  */
 
- forge.aes.startDecrypting = function(key, iv, output, mode) {
 
-   var cipher = _createCipher({
 
-     key: key,
 
-     output: output,
 
-     decrypt: true,
 
-     mode: mode
 
-   });
 
-   cipher.start(iv);
 
-   return cipher;
 
- };
 
- /**
 
-  * Deprecated. Instead, use:
 
-  *
 
-  * var decipher = forge.cipher.createDecipher('AES-<mode>', key);
 
-  *
 
-  * Creates an AES cipher object to decrypt data using the given symmetric key.
 
-  *
 
-  * The key may be given as a string of bytes, an array of bytes, a
 
-  * byte buffer, or an array of 32-bit words.
 
-  *
 
-  * @param key the symmetric key to use.
 
-  * @param mode the cipher mode to use (default: 'CBC').
 
-  *
 
-  * @return the cipher.
 
-  */
 
- forge.aes.createDecryptionCipher = function(key, mode) {
 
-   return _createCipher({
 
-     key: key,
 
-     output: null,
 
-     decrypt: true,
 
-     mode: mode
 
-   });
 
- };
 
- /**
 
-  * Creates a new AES cipher algorithm object.
 
-  *
 
-  * @param name the name of the algorithm.
 
-  * @param mode the mode factory function.
 
-  *
 
-  * @return the AES algorithm object.
 
-  */
 
- forge.aes.Algorithm = function(name, mode) {
 
-   if(!init) {
 
-     initialize();
 
-   }
 
-   var self = this;
 
-   self.name = name;
 
-   self.mode = new mode({
 
-     blockSize: 16,
 
-     cipher: {
 
-       encrypt: function(inBlock, outBlock) {
 
-         return _updateBlock(self._w, inBlock, outBlock, false);
 
-       },
 
-       decrypt: function(inBlock, outBlock) {
 
-         return _updateBlock(self._w, inBlock, outBlock, true);
 
-       }
 
-     }
 
-   });
 
-   self._init = false;
 
- };
 
- /**
 
-  * Initializes this AES algorithm by expanding its key.
 
-  *
 
-  * @param options the options to use.
 
-  *          key the key to use with this algorithm.
 
-  *          decrypt true if the algorithm should be initialized for decryption,
 
-  *            false for encryption.
 
-  */
 
- forge.aes.Algorithm.prototype.initialize = function(options) {
 
-   if(this._init) {
 
-     return;
 
-   }
 
-   var key = options.key;
 
-   var tmp;
 
-   /* Note: The key may be a string of bytes, an array of bytes, a byte
 
-     buffer, or an array of 32-bit integers. If the key is in bytes, then
 
-     it must be 16, 24, or 32 bytes in length. If it is in 32-bit
 
-     integers, it must be 4, 6, or 8 integers long. */
 
-   if(typeof key === 'string' &&
 
-     (key.length === 16 || key.length === 24 || key.length === 32)) {
 
-     // convert key string into byte buffer
 
-     key = forge.util.createBuffer(key);
 
-   } else if(forge.util.isArray(key) &&
 
-     (key.length === 16 || key.length === 24 || key.length === 32)) {
 
-     // convert key integer array into byte buffer
 
-     tmp = key;
 
-     key = forge.util.createBuffer();
 
-     for(var i = 0; i < tmp.length; ++i) {
 
-       key.putByte(tmp[i]);
 
-     }
 
-   }
 
-   // convert key byte buffer into 32-bit integer array
 
-   if(!forge.util.isArray(key)) {
 
-     tmp = key;
 
-     key = [];
 
-     // key lengths of 16, 24, 32 bytes allowed
 
-     var len = tmp.length();
 
-     if(len === 16 || len === 24 || len === 32) {
 
-       len = len >>> 2;
 
-       for(var i = 0; i < len; ++i) {
 
-         key.push(tmp.getInt32());
 
-       }
 
-     }
 
-   }
 
-   // key must be an array of 32-bit integers by now
 
-   if(!forge.util.isArray(key) ||
 
-     !(key.length === 4 || key.length === 6 || key.length === 8)) {
 
-     throw new Error('Invalid key parameter.');
 
-   }
 
-   // encryption operation is always used for these modes
 
-   var mode = this.mode.name;
 
-   var encryptOp = (['CFB', 'OFB', 'CTR', 'GCM'].indexOf(mode) !== -1);
 
-   // do key expansion
 
-   this._w = _expandKey(key, options.decrypt && !encryptOp);
 
-   this._init = true;
 
- };
 
- /**
 
-  * Expands a key. Typically only used for testing.
 
-  *
 
-  * @param key the symmetric key to expand, as an array of 32-bit words.
 
-  * @param decrypt true to expand for decryption, false for encryption.
 
-  *
 
-  * @return the expanded key.
 
-  */
 
- forge.aes._expandKey = function(key, decrypt) {
 
-   if(!init) {
 
-     initialize();
 
-   }
 
-   return _expandKey(key, decrypt);
 
- };
 
- /**
 
-  * Updates a single block. Typically only used for testing.
 
-  *
 
-  * @param w the expanded key to use.
 
-  * @param input an array of block-size 32-bit words.
 
-  * @param output an array of block-size 32-bit words.
 
-  * @param decrypt true to decrypt, false to encrypt.
 
-  */
 
- forge.aes._updateBlock = _updateBlock;
 
- /** Register AES algorithms **/
 
- registerAlgorithm('AES-ECB', forge.cipher.modes.ecb);
 
- registerAlgorithm('AES-CBC', forge.cipher.modes.cbc);
 
- registerAlgorithm('AES-CFB', forge.cipher.modes.cfb);
 
- registerAlgorithm('AES-OFB', forge.cipher.modes.ofb);
 
- registerAlgorithm('AES-CTR', forge.cipher.modes.ctr);
 
- registerAlgorithm('AES-GCM', forge.cipher.modes.gcm);
 
- function registerAlgorithm(name, mode) {
 
-   var factory = function() {
 
-     return new forge.aes.Algorithm(name, mode);
 
-   };
 
-   forge.cipher.registerAlgorithm(name, factory);
 
- }
 
- /** AES implementation **/
 
- var init = false; // not yet initialized
 
- var Nb = 4;       // number of words comprising the state (AES = 4)
 
- var sbox;         // non-linear substitution table used in key expansion
 
- var isbox;        // inversion of sbox
 
- var rcon;         // round constant word array
 
- var mix;          // mix-columns table
 
- var imix;         // inverse mix-columns table
 
- /**
 
-  * Performs initialization, ie: precomputes tables to optimize for speed.
 
-  *
 
-  * One way to understand how AES works is to imagine that 'addition' and
 
-  * 'multiplication' are interfaces that require certain mathematical
 
-  * properties to hold true (ie: they are associative) but they might have
 
-  * different implementations and produce different kinds of results ...
 
-  * provided that their mathematical properties remain true. AES defines
 
-  * its own methods of addition and multiplication but keeps some important
 
-  * properties the same, ie: associativity and distributivity. The
 
-  * explanation below tries to shed some light on how AES defines addition
 
-  * and multiplication of bytes and 32-bit words in order to perform its
 
-  * encryption and decryption algorithms.
 
-  *
 
-  * The basics:
 
-  *
 
-  * The AES algorithm views bytes as binary representations of polynomials
 
-  * that have either 1 or 0 as the coefficients. It defines the addition
 
-  * or subtraction of two bytes as the XOR operation. It also defines the
 
-  * multiplication of two bytes as a finite field referred to as GF(2^8)
 
-  * (Note: 'GF' means "Galois Field" which is a field that contains a finite
 
-  * number of elements so GF(2^8) has 256 elements).
 
-  *
 
-  * This means that any two bytes can be represented as binary polynomials;
 
-  * when they multiplied together and modularly reduced by an irreducible
 
-  * polynomial of the 8th degree, the results are the field GF(2^8). The
 
-  * specific irreducible polynomial that AES uses in hexadecimal is 0x11b.
 
-  * This multiplication is associative with 0x01 as the identity:
 
-  *
 
-  * (b * 0x01 = GF(b, 0x01) = b).
 
-  *
 
-  * The operation GF(b, 0x02) can be performed at the byte level by left
 
-  * shifting b once and then XOR'ing it (to perform the modular reduction)
 
-  * with 0x11b if b is >= 128. Repeated application of the multiplication
 
-  * of 0x02 can be used to implement the multiplication of any two bytes.
 
-  *
 
-  * For instance, multiplying 0x57 and 0x13, denoted as GF(0x57, 0x13), can
 
-  * be performed by factoring 0x13 into 0x01, 0x02, and 0x10. Then these
 
-  * factors can each be multiplied by 0x57 and then added together. To do
 
-  * the multiplication, values for 0x57 multiplied by each of these 3 factors
 
-  * can be precomputed and stored in a table. To add them, the values from
 
-  * the table are XOR'd together.
 
-  *
 
-  * AES also defines addition and multiplication of words, that is 4-byte
 
-  * numbers represented as polynomials of 3 degrees where the coefficients
 
-  * are the values of the bytes.
 
-  *
 
-  * The word [a0, a1, a2, a3] is a polynomial a3x^3 + a2x^2 + a1x + a0.
 
-  *
 
-  * Addition is performed by XOR'ing like powers of x. Multiplication
 
-  * is performed in two steps, the first is an algebriac expansion as
 
-  * you would do normally (where addition is XOR). But the result is
 
-  * a polynomial larger than 3 degrees and thus it cannot fit in a word. So
 
-  * next the result is modularly reduced by an AES-specific polynomial of
 
-  * degree 4 which will always produce a polynomial of less than 4 degrees
 
-  * such that it will fit in a word. In AES, this polynomial is x^4 + 1.
 
-  *
 
-  * The modular product of two polynomials 'a' and 'b' is thus:
 
-  *
 
-  * d(x) = d3x^3 + d2x^2 + d1x + d0
 
-  * with
 
-  * d0 = GF(a0, b0) ^ GF(a3, b1) ^ GF(a2, b2) ^ GF(a1, b3)
 
-  * d1 = GF(a1, b0) ^ GF(a0, b1) ^ GF(a3, b2) ^ GF(a2, b3)
 
-  * d2 = GF(a2, b0) ^ GF(a1, b1) ^ GF(a0, b2) ^ GF(a3, b3)
 
-  * d3 = GF(a3, b0) ^ GF(a2, b1) ^ GF(a1, b2) ^ GF(a0, b3)
 
-  *
 
-  * As a matrix:
 
-  *
 
-  * [d0] = [a0 a3 a2 a1][b0]
 
-  * [d1]   [a1 a0 a3 a2][b1]
 
-  * [d2]   [a2 a1 a0 a3][b2]
 
-  * [d3]   [a3 a2 a1 a0][b3]
 
-  *
 
-  * Special polynomials defined by AES (0x02 == {02}):
 
-  * a(x)    = {03}x^3 + {01}x^2 + {01}x + {02}
 
-  * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}.
 
-  *
 
-  * These polynomials are used in the MixColumns() and InverseMixColumns()
 
-  * operations, respectively, to cause each element in the state to affect
 
-  * the output (referred to as diffusing).
 
-  *
 
-  * RotWord() uses: a0 = a1 = a2 = {00} and a3 = {01}, which is the
 
-  * polynomial x3.
 
-  *
 
-  * The ShiftRows() method modifies the last 3 rows in the state (where
 
-  * the state is 4 words with 4 bytes per word) by shifting bytes cyclically.
 
-  * The 1st byte in the second row is moved to the end of the row. The 1st
 
-  * and 2nd bytes in the third row are moved to the end of the row. The 1st,
 
-  * 2nd, and 3rd bytes are moved in the fourth row.
 
-  *
 
-  * More details on how AES arithmetic works:
 
-  *
 
-  * In the polynomial representation of binary numbers, XOR performs addition
 
-  * and subtraction and multiplication in GF(2^8) denoted as GF(a, b)
 
-  * corresponds with the multiplication of polynomials modulo an irreducible
 
-  * polynomial of degree 8. In other words, for AES, GF(a, b) will multiply
 
-  * polynomial 'a' with polynomial 'b' and then do a modular reduction by
 
-  * an AES-specific irreducible polynomial of degree 8.
 
-  *
 
-  * A polynomial is irreducible if its only divisors are one and itself. For
 
-  * the AES algorithm, this irreducible polynomial is:
 
-  *
 
-  * m(x) = x^8 + x^4 + x^3 + x + 1,
 
-  *
 
-  * or {01}{1b} in hexadecimal notation, where each coefficient is a bit:
 
-  * 100011011 = 283 = 0x11b.
 
-  *
 
-  * For example, GF(0x57, 0x83) = 0xc1 because
 
-  *
 
-  * 0x57 = 87  = 01010111 = x^6 + x^4 + x^2 + x + 1
 
-  * 0x85 = 131 = 10000101 = x^7 + x + 1
 
-  *
 
-  * (x^6 + x^4 + x^2 + x + 1) * (x^7 + x + 1)
 
-  * =  x^13 + x^11 + x^9 + x^8 + x^7 +
 
-  *    x^7 + x^5 + x^3 + x^2 + x +
 
-  *    x^6 + x^4 + x^2 + x + 1
 
-  * =  x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 = y
 
-  *    y modulo (x^8 + x^4 + x^3 + x + 1)
 
-  * =  x^7 + x^6 + 1.
 
-  *
 
-  * The modular reduction by m(x) guarantees the result will be a binary
 
-  * polynomial of less than degree 8, so that it can fit in a byte.
 
-  *
 
-  * The operation to multiply a binary polynomial b with x (the polynomial
 
-  * x in binary representation is 00000010) is:
 
-  *
 
-  * b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x^1
 
-  *
 
-  * To get GF(b, x) we must reduce that by m(x). If b_7 is 0 (that is the
 
-  * most significant bit is 0 in b) then the result is already reduced. If
 
-  * it is 1, then we can reduce it by subtracting m(x) via an XOR.
 
-  *
 
-  * It follows that multiplication by x (00000010 or 0x02) can be implemented
 
-  * by performing a left shift followed by a conditional bitwise XOR with
 
-  * 0x1b. This operation on bytes is denoted by xtime(). Multiplication by
 
-  * higher powers of x can be implemented by repeated application of xtime().
 
-  *
 
-  * By adding intermediate results, multiplication by any constant can be
 
-  * implemented. For instance:
 
-  *
 
-  * GF(0x57, 0x13) = 0xfe because:
 
-  *
 
-  * xtime(b) = (b & 128) ? (b << 1 ^ 0x11b) : (b << 1)
 
-  *
 
-  * Note: We XOR with 0x11b instead of 0x1b because in javascript our
 
-  * datatype for b can be larger than 1 byte, so a left shift will not
 
-  * automatically eliminate bits that overflow a byte ... by XOR'ing the
 
-  * overflow bit with 1 (the extra one from 0x11b) we zero it out.
 
-  *
 
-  * GF(0x57, 0x02) = xtime(0x57) = 0xae
 
-  * GF(0x57, 0x04) = xtime(0xae) = 0x47
 
-  * GF(0x57, 0x08) = xtime(0x47) = 0x8e
 
-  * GF(0x57, 0x10) = xtime(0x8e) = 0x07
 
-  *
 
-  * GF(0x57, 0x13) = GF(0x57, (0x01 ^ 0x02 ^ 0x10))
 
-  *
 
-  * And by the distributive property (since XOR is addition and GF() is
 
-  * multiplication):
 
-  *
 
-  * = GF(0x57, 0x01) ^ GF(0x57, 0x02) ^ GF(0x57, 0x10)
 
-  * = 0x57 ^ 0xae ^ 0x07
 
-  * = 0xfe.
 
-  */
 
- function initialize() {
 
-   init = true;
 
-   /* Populate the Rcon table. These are the values given by
 
-     [x^(i-1),{00},{00},{00}] where x^(i-1) are powers of x (and x = 0x02)
 
-     in the field of GF(2^8), where i starts at 1.
 
-     rcon[0] = [0x00, 0x00, 0x00, 0x00]
 
-     rcon[1] = [0x01, 0x00, 0x00, 0x00] 2^(1-1) = 2^0 = 1
 
-     rcon[2] = [0x02, 0x00, 0x00, 0x00] 2^(2-1) = 2^1 = 2
 
-     ...
 
-     rcon[9]  = [0x1B, 0x00, 0x00, 0x00] 2^(9-1)  = 2^8 = 0x1B
 
-     rcon[10] = [0x36, 0x00, 0x00, 0x00] 2^(10-1) = 2^9 = 0x36
 
-     We only store the first byte because it is the only one used.
 
-   */
 
-   rcon = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36];
 
-   // compute xtime table which maps i onto GF(i, 0x02)
 
-   var xtime = new Array(256);
 
-   for(var i = 0; i < 128; ++i) {
 
-     xtime[i] = i << 1;
 
-     xtime[i + 128] = (i + 128) << 1 ^ 0x11B;
 
-   }
 
-   // compute all other tables
 
-   sbox = new Array(256);
 
-   isbox = new Array(256);
 
-   mix = new Array(4);
 
-   imix = new Array(4);
 
-   for(var i = 0; i < 4; ++i) {
 
-     mix[i] = new Array(256);
 
-     imix[i] = new Array(256);
 
-   }
 
-   var e = 0, ei = 0, e2, e4, e8, sx, sx2, me, ime;
 
-   for(var i = 0; i < 256; ++i) {
 
-     /* We need to generate the SubBytes() sbox and isbox tables so that
 
-       we can perform byte substitutions. This requires us to traverse
 
-       all of the elements in GF, find their multiplicative inverses,
 
-       and apply to each the following affine transformation:
 
-       bi' = bi ^ b(i + 4) mod 8 ^ b(i + 5) mod 8 ^ b(i + 6) mod 8 ^
 
-             b(i + 7) mod 8 ^ ci
 
-       for 0 <= i < 8, where bi is the ith bit of the byte, and ci is the
 
-       ith bit of a byte c with the value {63} or {01100011}.
 
-       It is possible to traverse every possible value in a Galois field
 
-       using what is referred to as a 'generator'. There are many
 
-       generators (128 out of 256): 3,5,6,9,11,82 to name a few. To fully
 
-       traverse GF we iterate 255 times, multiplying by our generator
 
-       each time.
 
-       On each iteration we can determine the multiplicative inverse for
 
-       the current element.
 
-       Suppose there is an element in GF 'e'. For a given generator 'g',
 
-       e = g^x. The multiplicative inverse of e is g^(255 - x). It turns
 
-       out that if use the inverse of a generator as another generator
 
-       it will produce all of the corresponding multiplicative inverses
 
-       at the same time. For this reason, we choose 5 as our inverse
 
-       generator because it only requires 2 multiplies and 1 add and its
 
-       inverse, 82, requires relatively few operations as well.
 
-       In order to apply the affine transformation, the multiplicative
 
-       inverse 'ei' of 'e' can be repeatedly XOR'd (4 times) with a
 
-       bit-cycling of 'ei'. To do this 'ei' is first stored in 's' and
 
-       'x'. Then 's' is left shifted and the high bit of 's' is made the
 
-       low bit. The resulting value is stored in 's'. Then 'x' is XOR'd
 
-       with 's' and stored in 'x'. On each subsequent iteration the same
 
-       operation is performed. When 4 iterations are complete, 'x' is
 
-       XOR'd with 'c' (0x63) and the transformed value is stored in 'x'.
 
-       For example:
 
-       s = 01000001
 
-       x = 01000001
 
-       iteration 1: s = 10000010, x ^= s
 
-       iteration 2: s = 00000101, x ^= s
 
-       iteration 3: s = 00001010, x ^= s
 
-       iteration 4: s = 00010100, x ^= s
 
-       x ^= 0x63
 
-       This can be done with a loop where s = (s << 1) | (s >> 7). However,
 
-       it can also be done by using a single 16-bit (in this case 32-bit)
 
-       number 'sx'. Since XOR is an associative operation, we can set 'sx'
 
-       to 'ei' and then XOR it with 'sx' left-shifted 1,2,3, and 4 times.
 
-       The most significant bits will flow into the high 8 bit positions
 
-       and be correctly XOR'd with one another. All that remains will be
 
-       to cycle the high 8 bits by XOR'ing them all with the lower 8 bits
 
-       afterwards.
 
-       At the same time we're populating sbox and isbox we can precompute
 
-       the multiplication we'll need to do to do MixColumns() later.
 
-     */
 
-     // apply affine transformation
 
-     sx = ei ^ (ei << 1) ^ (ei << 2) ^ (ei << 3) ^ (ei << 4);
 
-     sx = (sx >> 8) ^ (sx & 255) ^ 0x63;
 
-     // update tables
 
-     sbox[e] = sx;
 
-     isbox[sx] = e;
 
-     /* Mixing columns is done using matrix multiplication. The columns
 
-       that are to be mixed are each a single word in the current state.
 
-       The state has Nb columns (4 columns). Therefore each column is a
 
-       4 byte word. So to mix the columns in a single column 'c' where
 
-       its rows are r0, r1, r2, and r3, we use the following matrix
 
-       multiplication:
 
-       [2 3 1 1]*[r0,c]=[r'0,c]
 
-       [1 2 3 1] [r1,c] [r'1,c]
 
-       [1 1 2 3] [r2,c] [r'2,c]
 
-       [3 1 1 2] [r3,c] [r'3,c]
 
-       r0, r1, r2, and r3 are each 1 byte of one of the words in the
 
-       state (a column). To do matrix multiplication for each mixed
 
-       column c' we multiply the corresponding row from the left matrix
 
-       with the corresponding column from the right matrix. In total, we
 
-       get 4 equations:
 
-       r0,c' = 2*r0,c + 3*r1,c + 1*r2,c + 1*r3,c
 
-       r1,c' = 1*r0,c + 2*r1,c + 3*r2,c + 1*r3,c
 
-       r2,c' = 1*r0,c + 1*r1,c + 2*r2,c + 3*r3,c
 
-       r3,c' = 3*r0,c + 1*r1,c + 1*r2,c + 2*r3,c
 
-       As usual, the multiplication is as previously defined and the
 
-       addition is XOR. In order to optimize mixing columns we can store
 
-       the multiplication results in tables. If you think of the whole
 
-       column as a word (it might help to visualize by mentally rotating
 
-       the equations above by counterclockwise 90 degrees) then you can
 
-       see that it would be useful to map the multiplications performed on
 
-       each byte (r0, r1, r2, r3) onto a word as well. For instance, we
 
-       could map 2*r0,1*r0,1*r0,3*r0 onto a word by storing 2*r0 in the
 
-       highest 8 bits and 3*r0 in the lowest 8 bits (with the other two
 
-       respectively in the middle). This means that a table can be
 
-       constructed that uses r0 as an index to the word. We can do the
 
-       same with r1, r2, and r3, creating a total of 4 tables.
 
-       To construct a full c', we can just look up each byte of c in
 
-       their respective tables and XOR the results together.
 
-       Also, to build each table we only have to calculate the word
 
-       for 2,1,1,3 for every byte ... which we can do on each iteration
 
-       of this loop since we will iterate over every byte. After we have
 
-       calculated 2,1,1,3 we can get the results for the other tables
 
-       by cycling the byte at the end to the beginning. For instance
 
-       we can take the result of table 2,1,1,3 and produce table 3,2,1,1
 
-       by moving the right most byte to the left most position just like
 
-       how you can imagine the 3 moved out of 2,1,1,3 and to the front
 
-       to produce 3,2,1,1.
 
-       There is another optimization in that the same multiples of
 
-       the current element we need in order to advance our generator
 
-       to the next iteration can be reused in performing the 2,1,1,3
 
-       calculation. We also calculate the inverse mix column tables,
 
-       with e,9,d,b being the inverse of 2,1,1,3.
 
-       When we're done, and we need to actually mix columns, the first
 
-       byte of each state word should be put through mix[0] (2,1,1,3),
 
-       the second through mix[1] (3,2,1,1) and so forth. Then they should
 
-       be XOR'd together to produce the fully mixed column.
 
-     */
 
-     // calculate mix and imix table values
 
-     sx2 = xtime[sx];
 
-     e2 = xtime[e];
 
-     e4 = xtime[e2];
 
-     e8 = xtime[e4];
 
-     me =
 
-       (sx2 << 24) ^  // 2
 
-       (sx << 16) ^   // 1
 
-       (sx << 8) ^    // 1
 
-       (sx ^ sx2);    // 3
 
-     ime =
 
-       (e2 ^ e4 ^ e8) << 24 ^  // E (14)
 
-       (e ^ e8) << 16 ^        // 9
 
-       (e ^ e4 ^ e8) << 8 ^    // D (13)
 
-       (e ^ e2 ^ e8);          // B (11)
 
-     // produce each of the mix tables by rotating the 2,1,1,3 value
 
-     for(var n = 0; n < 4; ++n) {
 
-       mix[n][e] = me;
 
-       imix[n][sx] = ime;
 
-       // cycle the right most byte to the left most position
 
-       // ie: 2,1,1,3 becomes 3,2,1,1
 
-       me = me << 24 | me >>> 8;
 
-       ime = ime << 24 | ime >>> 8;
 
-     }
 
-     // get next element and inverse
 
-     if(e === 0) {
 
-       // 1 is the inverse of 1
 
-       e = ei = 1;
 
-     } else {
 
-       // e = 2e + 2*2*2*(10e)) = multiply e by 82 (chosen generator)
 
-       // ei = ei + 2*2*ei = multiply ei by 5 (inverse generator)
 
-       e = e2 ^ xtime[xtime[xtime[e2 ^ e8]]];
 
-       ei ^= xtime[xtime[ei]];
 
-     }
 
-   }
 
- }
 
- /**
 
-  * Generates a key schedule using the AES key expansion algorithm.
 
-  *
 
-  * The AES algorithm takes the Cipher Key, K, and performs a Key Expansion
 
-  * routine to generate a key schedule. The Key Expansion generates a total
 
-  * of Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words,
 
-  * and each of the Nr rounds requires Nb words of key data. The resulting
 
-  * key schedule consists of a linear array of 4-byte words, denoted [wi ],
 
-  * with i in the range 0 <= i < Nb(Nr + 1).
 
-  *
 
-  * KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
 
-  * AES-128 (Nb=4, Nk=4, Nr=10)
 
-  * AES-192 (Nb=4, Nk=6, Nr=12)
 
-  * AES-256 (Nb=4, Nk=8, Nr=14)
 
-  * Note: Nr=Nk+6.
 
-  *
 
-  * Nb is the number of columns (32-bit words) comprising the State (or
 
-  * number of bytes in a block). For AES, Nb=4.
 
-  *
 
-  * @param key the key to schedule (as an array of 32-bit words).
 
-  * @param decrypt true to modify the key schedule to decrypt, false not to.
 
-  *
 
-  * @return the generated key schedule.
 
-  */
 
- function _expandKey(key, decrypt) {
 
-   // copy the key's words to initialize the key schedule
 
-   var w = key.slice(0);
 
-   /* RotWord() will rotate a word, moving the first byte to the last
 
-     byte's position (shifting the other bytes left).
 
-     We will be getting the value of Rcon at i / Nk. 'i' will iterate
 
-     from Nk to (Nb * Nr+1). Nk = 4 (4 byte key), Nb = 4 (4 words in
 
-     a block), Nr = Nk + 6 (10). Therefore 'i' will iterate from
 
-     4 to 44 (exclusive). Each time we iterate 4 times, i / Nk will
 
-     increase by 1. We use a counter iNk to keep track of this.
 
-    */
 
-   // go through the rounds expanding the key
 
-   var temp, iNk = 1;
 
-   var Nk = w.length;
 
-   var Nr1 = Nk + 6 + 1;
 
-   var end = Nb * Nr1;
 
-   for(var i = Nk; i < end; ++i) {
 
-     temp = w[i - 1];
 
-     if(i % Nk === 0) {
 
-       // temp = SubWord(RotWord(temp)) ^ Rcon[i / Nk]
 
-       temp =
 
-         sbox[temp >>> 16 & 255] << 24 ^
 
-         sbox[temp >>> 8 & 255] << 16 ^
 
-         sbox[temp & 255] << 8 ^
 
-         sbox[temp >>> 24] ^ (rcon[iNk] << 24);
 
-       iNk++;
 
-     } else if(Nk > 6 && (i % Nk === 4)) {
 
-       // temp = SubWord(temp)
 
-       temp =
 
-         sbox[temp >>> 24] << 24 ^
 
-         sbox[temp >>> 16 & 255] << 16 ^
 
-         sbox[temp >>> 8 & 255] << 8 ^
 
-         sbox[temp & 255];
 
-     }
 
-     w[i] = w[i - Nk] ^ temp;
 
-   }
 
-   /* When we are updating a cipher block we always use the code path for
 
-      encryption whether we are decrypting or not (to shorten code and
 
-      simplify the generation of look up tables). However, because there
 
-      are differences in the decryption algorithm, other than just swapping
 
-      in different look up tables, we must transform our key schedule to
 
-      account for these changes:
 
-      1. The decryption algorithm gets its key rounds in reverse order.
 
-      2. The decryption algorithm adds the round key before mixing columns
 
-        instead of afterwards.
 
-      We don't need to modify our key schedule to handle the first case,
 
-      we can just traverse the key schedule in reverse order when decrypting.
 
-      The second case requires a little work.
 
-      The tables we built for performing rounds will take an input and then
 
-      perform SubBytes() and MixColumns() or, for the decrypt version,
 
-      InvSubBytes() and InvMixColumns(). But the decrypt algorithm requires
 
-      us to AddRoundKey() before InvMixColumns(). This means we'll need to
 
-      apply some transformations to the round key to inverse-mix its columns
 
-      so they'll be correct for moving AddRoundKey() to after the state has
 
-      had its columns inverse-mixed.
 
-      To inverse-mix the columns of the state when we're decrypting we use a
 
-      lookup table that will apply InvSubBytes() and InvMixColumns() at the
 
-      same time. However, the round key's bytes are not inverse-substituted
 
-      in the decryption algorithm. To get around this problem, we can first
 
-      substitute the bytes in the round key so that when we apply the
 
-      transformation via the InvSubBytes()+InvMixColumns() table, it will
 
-      undo our substitution leaving us with the original value that we
 
-      want -- and then inverse-mix that value.
 
-      This change will correctly alter our key schedule so that we can XOR
 
-      each round key with our already transformed decryption state. This
 
-      allows us to use the same code path as the encryption algorithm.
 
-      We make one more change to the decryption key. Since the decryption
 
-      algorithm runs in reverse from the encryption algorithm, we reverse
 
-      the order of the round keys to avoid having to iterate over the key
 
-      schedule backwards when running the encryption algorithm later in
 
-      decryption mode. In addition to reversing the order of the round keys,
 
-      we also swap each round key's 2nd and 4th rows. See the comments
 
-      section where rounds are performed for more details about why this is
 
-      done. These changes are done inline with the other substitution
 
-      described above.
 
-   */
 
-   if(decrypt) {
 
-     var tmp;
 
-     var m0 = imix[0];
 
-     var m1 = imix[1];
 
-     var m2 = imix[2];
 
-     var m3 = imix[3];
 
-     var wnew = w.slice(0);
 
-     end = w.length;
 
-     for(var i = 0, wi = end - Nb; i < end; i += Nb, wi -= Nb) {
 
-       // do not sub the first or last round key (round keys are Nb
 
-       // words) as no column mixing is performed before they are added,
 
-       // but do change the key order
 
-       if(i === 0 || i === (end - Nb)) {
 
-         wnew[i] = w[wi];
 
-         wnew[i + 1] = w[wi + 3];
 
-         wnew[i + 2] = w[wi + 2];
 
-         wnew[i + 3] = w[wi + 1];
 
-       } else {
 
-         // substitute each round key byte because the inverse-mix
 
-         // table will inverse-substitute it (effectively cancel the
 
-         // substitution because round key bytes aren't sub'd in
 
-         // decryption mode) and swap indexes 3 and 1
 
-         for(var n = 0; n < Nb; ++n) {
 
-           tmp = w[wi + n];
 
-           wnew[i + (3&-n)] =
 
-             m0[sbox[tmp >>> 24]] ^
 
-             m1[sbox[tmp >>> 16 & 255]] ^
 
-             m2[sbox[tmp >>> 8 & 255]] ^
 
-             m3[sbox[tmp & 255]];
 
-         }
 
-       }
 
-     }
 
-     w = wnew;
 
-   }
 
-   return w;
 
- }
 
- /**
 
-  * Updates a single block (16 bytes) using AES. The update will either
 
-  * encrypt or decrypt the block.
 
-  *
 
-  * @param w the key schedule.
 
-  * @param input the input block (an array of 32-bit words).
 
-  * @param output the updated output block.
 
-  * @param decrypt true to decrypt the block, false to encrypt it.
 
-  */
 
- function _updateBlock(w, input, output, decrypt) {
 
-   /*
 
-   Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
 
-   begin
 
-     byte state[4,Nb]
 
-     state = in
 
-     AddRoundKey(state, w[0, Nb-1])
 
-     for round = 1 step 1 to Nr-1
 
-       SubBytes(state)
 
-       ShiftRows(state)
 
-       MixColumns(state)
 
-       AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 
-     end for
 
-     SubBytes(state)
 
-     ShiftRows(state)
 
-     AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 
-     out = state
 
-   end
 
-   InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
 
-   begin
 
-     byte state[4,Nb]
 
-     state = in
 
-     AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 
-     for round = Nr-1 step -1 downto 1
 
-       InvShiftRows(state)
 
-       InvSubBytes(state)
 
-       AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
 
-       InvMixColumns(state)
 
-     end for
 
-     InvShiftRows(state)
 
-     InvSubBytes(state)
 
-     AddRoundKey(state, w[0, Nb-1])
 
-     out = state
 
-   end
 
-   */
 
-   // Encrypt: AddRoundKey(state, w[0, Nb-1])
 
-   // Decrypt: AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 
-   var Nr = w.length / 4 - 1;
 
-   var m0, m1, m2, m3, sub;
 
-   if(decrypt) {
 
-     m0 = imix[0];
 
-     m1 = imix[1];
 
-     m2 = imix[2];
 
-     m3 = imix[3];
 
-     sub = isbox;
 
-   } else {
 
-     m0 = mix[0];
 
-     m1 = mix[1];
 
-     m2 = mix[2];
 
-     m3 = mix[3];
 
-     sub = sbox;
 
-   }
 
-   var a, b, c, d, a2, b2, c2;
 
-   a = input[0] ^ w[0];
 
-   b = input[decrypt ? 3 : 1] ^ w[1];
 
-   c = input[2] ^ w[2];
 
-   d = input[decrypt ? 1 : 3] ^ w[3];
 
-   var i = 3;
 
-   /* In order to share code we follow the encryption algorithm when both
 
-     encrypting and decrypting. To account for the changes required in the
 
-     decryption algorithm, we use different lookup tables when decrypting
 
-     and use a modified key schedule to account for the difference in the
 
-     order of transformations applied when performing rounds. We also get
 
-     key rounds in reverse order (relative to encryption). */
 
-   for(var round = 1; round < Nr; ++round) {
 
-     /* As described above, we'll be using table lookups to perform the
 
-       column mixing. Each column is stored as a word in the state (the
 
-       array 'input' has one column as a word at each index). In order to
 
-       mix a column, we perform these transformations on each row in c,
 
-       which is 1 byte in each word. The new column for c0 is c'0:
 
-                m0      m1      m2      m3
 
-       r0,c'0 = 2*r0,c0 + 3*r1,c0 + 1*r2,c0 + 1*r3,c0
 
-       r1,c'0 = 1*r0,c0 + 2*r1,c0 + 3*r2,c0 + 1*r3,c0
 
-       r2,c'0 = 1*r0,c0 + 1*r1,c0 + 2*r2,c0 + 3*r3,c0
 
-       r3,c'0 = 3*r0,c0 + 1*r1,c0 + 1*r2,c0 + 2*r3,c0
 
-       So using mix tables where c0 is a word with r0 being its upper
 
-       8 bits and r3 being its lower 8 bits:
 
-       m0[c0 >> 24] will yield this word: [2*r0,1*r0,1*r0,3*r0]
 
-       ...
 
-       m3[c0 & 255] will yield this word: [1*r3,1*r3,3*r3,2*r3]
 
-       Therefore to mix the columns in each word in the state we
 
-       do the following (& 255 omitted for brevity):
 
-       c'0,r0 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
 
-       c'0,r1 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
 
-       c'0,r2 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
 
-       c'0,r3 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
 
-       However, before mixing, the algorithm requires us to perform
 
-       ShiftRows(). The ShiftRows() transformation cyclically shifts the
 
-       last 3 rows of the state over different offsets. The first row
 
-       (r = 0) is not shifted.
 
-       s'_r,c = s_r,(c + shift(r, Nb) mod Nb
 
-       for 0 < r < 4 and 0 <= c < Nb and
 
-       shift(1, 4) = 1
 
-       shift(2, 4) = 2
 
-       shift(3, 4) = 3.
 
-       This causes the first byte in r = 1 to be moved to the end of
 
-       the row, the first 2 bytes in r = 2 to be moved to the end of
 
-       the row, the first 3 bytes in r = 3 to be moved to the end of
 
-       the row:
 
-       r1: [c0 c1 c2 c3] => [c1 c2 c3 c0]
 
-       r2: [c0 c1 c2 c3]    [c2 c3 c0 c1]
 
-       r3: [c0 c1 c2 c3]    [c3 c0 c1 c2]
 
-       We can make these substitutions inline with our column mixing to
 
-       generate an updated set of equations to produce each word in the
 
-       state (note the columns have changed positions):
 
-       c0 c1 c2 c3 => c0 c1 c2 c3
 
-       c0 c1 c2 c3    c1 c2 c3 c0  (cycled 1 byte)
 
-       c0 c1 c2 c3    c2 c3 c0 c1  (cycled 2 bytes)
 
-       c0 c1 c2 c3    c3 c0 c1 c2  (cycled 3 bytes)
 
-       Therefore:
 
-       c'0 = 2*r0,c0 + 3*r1,c1 + 1*r2,c2 + 1*r3,c3
 
-       c'0 = 1*r0,c0 + 2*r1,c1 + 3*r2,c2 + 1*r3,c3
 
-       c'0 = 1*r0,c0 + 1*r1,c1 + 2*r2,c2 + 3*r3,c3
 
-       c'0 = 3*r0,c0 + 1*r1,c1 + 1*r2,c2 + 2*r3,c3
 
-       c'1 = 2*r0,c1 + 3*r1,c2 + 1*r2,c3 + 1*r3,c0
 
-       c'1 = 1*r0,c1 + 2*r1,c2 + 3*r2,c3 + 1*r3,c0
 
-       c'1 = 1*r0,c1 + 1*r1,c2 + 2*r2,c3 + 3*r3,c0
 
-       c'1 = 3*r0,c1 + 1*r1,c2 + 1*r2,c3 + 2*r3,c0
 
-       ... and so forth for c'2 and c'3. The important distinction is
 
-       that the columns are cycling, with c0 being used with the m0
 
-       map when calculating c0, but c1 being used with the m0 map when
 
-       calculating c1 ... and so forth.
 
-       When performing the inverse we transform the mirror image and
 
-       skip the bottom row, instead of the top one, and move upwards:
 
-       c3 c2 c1 c0 => c0 c3 c2 c1  (cycled 3 bytes) *same as encryption
 
-       c3 c2 c1 c0    c1 c0 c3 c2  (cycled 2 bytes)
 
-       c3 c2 c1 c0    c2 c1 c0 c3  (cycled 1 byte)  *same as encryption
 
-       c3 c2 c1 c0    c3 c2 c1 c0
 
-       If you compare the resulting matrices for ShiftRows()+MixColumns()
 
-       and for InvShiftRows()+InvMixColumns() the 2nd and 4th columns are
 
-       different (in encrypt mode vs. decrypt mode). So in order to use
 
-       the same code to handle both encryption and decryption, we will
 
-       need to do some mapping.
 
-       If in encryption mode we let a=c0, b=c1, c=c2, d=c3, and r<N> be
 
-       a row number in the state, then the resulting matrix in encryption
 
-       mode for applying the above transformations would be:
 
-       r1: a b c d
 
-       r2: b c d a
 
-       r3: c d a b
 
-       r4: d a b c
 
-       If we did the same in decryption mode we would get:
 
-       r1: a d c b
 
-       r2: b a d c
 
-       r3: c b a d
 
-       r4: d c b a
 
-       If instead we swap d and b (set b=c3 and d=c1), then we get:
 
-       r1: a b c d
 
-       r2: d a b c
 
-       r3: c d a b
 
-       r4: b c d a
 
-       Now the 1st and 3rd rows are the same as the encryption matrix. All
 
-       we need to do then to make the mapping exactly the same is to swap
 
-       the 2nd and 4th rows when in decryption mode. To do this without
 
-       having to do it on each iteration, we swapped the 2nd and 4th rows
 
-       in the decryption key schedule. We also have to do the swap above
 
-       when we first pull in the input and when we set the final output. */
 
-     a2 =
 
-       m0[a >>> 24] ^
 
-       m1[b >>> 16 & 255] ^
 
-       m2[c >>> 8 & 255] ^
 
-       m3[d & 255] ^ w[++i];
 
-     b2 =
 
-       m0[b >>> 24] ^
 
-       m1[c >>> 16 & 255] ^
 
-       m2[d >>> 8 & 255] ^
 
-       m3[a & 255] ^ w[++i];
 
-     c2 =
 
-       m0[c >>> 24] ^
 
-       m1[d >>> 16 & 255] ^
 
-       m2[a >>> 8 & 255] ^
 
-       m3[b & 255] ^ w[++i];
 
-     d =
 
-       m0[d >>> 24] ^
 
-       m1[a >>> 16 & 255] ^
 
-       m2[b >>> 8 & 255] ^
 
-       m3[c & 255] ^ w[++i];
 
-     a = a2;
 
-     b = b2;
 
-     c = c2;
 
-   }
 
-   /*
 
-     Encrypt:
 
-     SubBytes(state)
 
-     ShiftRows(state)
 
-     AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
 
-     Decrypt:
 
-     InvShiftRows(state)
 
-     InvSubBytes(state)
 
-     AddRoundKey(state, w[0, Nb-1])
 
-    */
 
-   // Note: rows are shifted inline
 
-   output[0] =
 
-     (sub[a >>> 24] << 24) ^
 
-     (sub[b >>> 16 & 255] << 16) ^
 
-     (sub[c >>> 8 & 255] << 8) ^
 
-     (sub[d & 255]) ^ w[++i];
 
-   output[decrypt ? 3 : 1] =
 
-     (sub[b >>> 24] << 24) ^
 
-     (sub[c >>> 16 & 255] << 16) ^
 
-     (sub[d >>> 8 & 255] << 8) ^
 
-     (sub[a & 255]) ^ w[++i];
 
-   output[2] =
 
-     (sub[c >>> 24] << 24) ^
 
-     (sub[d >>> 16 & 255] << 16) ^
 
-     (sub[a >>> 8 & 255] << 8) ^
 
-     (sub[b & 255]) ^ w[++i];
 
-   output[decrypt ? 1 : 3] =
 
-     (sub[d >>> 24] << 24) ^
 
-     (sub[a >>> 16 & 255] << 16) ^
 
-     (sub[b >>> 8 & 255] << 8) ^
 
-     (sub[c & 255]) ^ w[++i];
 
- }
 
- /**
 
-  * Deprecated. Instead, use:
 
-  *
 
-  * forge.cipher.createCipher('AES-<mode>', key);
 
-  * forge.cipher.createDecipher('AES-<mode>', key);
 
-  *
 
-  * Creates a deprecated AES cipher object. This object's mode will default to
 
-  * CBC (cipher-block-chaining).
 
-  *
 
-  * The key and iv may be given as a string of bytes, an array of bytes, a
 
-  * byte buffer, or an array of 32-bit words.
 
-  *
 
-  * @param options the options to use.
 
-  *          key the symmetric key to use.
 
-  *          output the buffer to write to.
 
-  *          decrypt true for decryption, false for encryption.
 
-  *          mode the cipher mode to use (default: 'CBC').
 
-  *
 
-  * @return the cipher.
 
-  */
 
- function _createCipher(options) {
 
-   options = options || {};
 
-   var mode = (options.mode || 'CBC').toUpperCase();
 
-   var algorithm = 'AES-' + mode;
 
-   var cipher;
 
-   if(options.decrypt) {
 
-     cipher = forge.cipher.createDecipher(algorithm, options.key);
 
-   } else {
 
-     cipher = forge.cipher.createCipher(algorithm, options.key);
 
-   }
 
-   // backwards compatible start API
 
-   var start = cipher.start;
 
-   cipher.start = function(iv, options) {
 
-     // backwards compatibility: support second arg as output buffer
 
-     var output = null;
 
-     if(options instanceof forge.util.ByteBuffer) {
 
-       output = options;
 
-       options = {};
 
-     }
 
-     options = options || {};
 
-     options.output = output;
 
-     options.iv = iv;
 
-     start.call(cipher, options);
 
-   };
 
-   return cipher;
 
- }
 
 
  |