| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988 | /* global a2c */'use strict';var rNumber = String.raw`[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?\s*`,    rCommaWsp = String.raw`(?:\s,?\s*|,\s*)`,    rNumberCommaWsp = `(${rNumber})` + rCommaWsp,    rFlagCommaWsp = `([01])${rCommaWsp}?`,    rCoordinatePair = String.raw`(${rNumber})${rCommaWsp}?(${rNumber})`,    rArcSeq = (rNumberCommaWsp + '?').repeat(2) + rNumberCommaWsp + rFlagCommaWsp.repeat(2) + rCoordinatePair;var regPathInstructions = /([MmLlHhVvCcSsQqTtAaZz])\s*/,    regCoordinateSequence = new RegExp(rNumber, 'g'),    regArcArgumentSequence = new RegExp(rArcSeq, 'g'),    regNumericValues = /[-+]?(\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/,    transform2js = require('./_transforms').transform2js,    transformsMultiply = require('./_transforms').transformsMultiply,    transformArc = require('./_transforms').transformArc,    collections = require('./_collections.js'),    referencesProps = collections.referencesProps,    defaultStrokeWidth = collections.attrsGroupsDefaults.presentation['stroke-width'],    cleanupOutData = require('../lib/svgo/tools').cleanupOutData,    removeLeadingZero = require('../lib/svgo/tools').removeLeadingZero,    prevCtrlPoint;/** * Convert path string to JS representation. * * @param {String} pathString input string * @param {Object} params plugin params * @return {Array} output array */exports.path2js = function(path) {    if (path.pathJS) return path.pathJS;    var paramsLength = { // Number of parameters of every path command            H: 1, V: 1, M: 2, L: 2, T: 2, Q: 4, S: 4, C: 6, A: 7,            h: 1, v: 1, m: 2, l: 2, t: 2, q: 4, s: 4, c: 6, a: 7        },        pathData = [],   // JS representation of the path data        instruction, // current instruction context        startMoveto = false;    // splitting path string into array like ['M', '10 50', 'L', '20 30']    path.attr('d').value.split(regPathInstructions).forEach(function(data) {        if (!data) return;        if (!startMoveto) {            if (data == 'M' || data == 'm') {                startMoveto = true;            } else return;        }        // instruction item        if (regPathInstructions.test(data)) {            instruction = data;            // z - instruction w/o data            if (instruction == 'Z' || instruction == 'z') {                pathData.push({                    instruction: 'z'                });            }        // data item        } else {            /* jshint boss: true */            if (instruction == 'A' || instruction == 'a') {                var newData = [];                for (var args; (args = regArcArgumentSequence.exec(data));) {                    for (var i = 1; i < args.length; i++) {                        newData.push(args[i]);                    }                }                data = newData;            } else {                data = data.match(regCoordinateSequence);            }            if (!data) return;            data = data.map(Number);            // Subsequent moveto pairs of coordinates are threated as implicit lineto commands            // http://www.w3.org/TR/SVG/paths.html#PathDataMovetoCommands            if (instruction == 'M' || instruction == 'm') {                pathData.push({                    instruction: pathData.length == 0 ? 'M' : instruction,                    data: data.splice(0, 2)                });                instruction = instruction == 'M' ? 'L' : 'l';            }            for (var pair = paramsLength[instruction]; data.length;) {                pathData.push({                    instruction: instruction,                    data: data.splice(0, pair)                });            }        }    });    // First moveto is actually absolute. Subsequent coordinates were separated above.    if (pathData.length && pathData[0].instruction == 'm') {        pathData[0].instruction = 'M';    }    path.pathJS = pathData;    return pathData;};/** * Convert relative Path data to absolute. * * @param {Array} data input data * @return {Array} output data */var relative2absolute = exports.relative2absolute = function(data) {    var currentPoint = [0, 0],        subpathPoint = [0, 0],        i;    return data.map(function(item) {        var instruction = item.instruction,            itemData = item.data && item.data.slice();        if (instruction == 'M') {            set(currentPoint, itemData);            set(subpathPoint, itemData);        } else if ('mlcsqt'.indexOf(instruction) > -1) {            for (i = 0; i < itemData.length; i++) {                itemData[i] += currentPoint[i % 2];            }            set(currentPoint, itemData);            if (instruction == 'm') {                set(subpathPoint, itemData);            }        } else if (instruction == 'a') {            itemData[5] += currentPoint[0];            itemData[6] += currentPoint[1];            set(currentPoint, itemData);        } else if (instruction == 'h') {            itemData[0] += currentPoint[0];            currentPoint[0] = itemData[0];        } else if (instruction == 'v') {            itemData[0] += currentPoint[1];            currentPoint[1] = itemData[0];        } else if ('MZLCSQTA'.indexOf(instruction) > -1) {            set(currentPoint, itemData);        } else if (instruction == 'H') {            currentPoint[0] = itemData[0];        } else if (instruction == 'V') {            currentPoint[1] = itemData[0];        } else if (instruction == 'z') {            set(currentPoint, subpathPoint);        }        return instruction == 'z' ?            { instruction: 'z' } :            {                instruction: instruction.toUpperCase(),                data: itemData            };    });};/** * Apply transformation(s) to the Path data. * * @param {Object} elem current element * @param {Array} path input path data * @param {Object} params whether to apply transforms to stroked lines and transform precision (used for stroke width) * @return {Array} output path data */exports.applyTransforms = function(elem, path, params) {    // if there are no 'stroke' attr and references to other objects such as    // gradiends or clip-path which are also subjects to transform.    if (!elem.hasAttr('transform') || !elem.attr('transform').value ||        elem.someAttr(function(attr) {            return ~referencesProps.indexOf(attr.name) && ~attr.value.indexOf('url(');        }))        return path;    var matrix = transformsMultiply(transform2js(elem.attr('transform').value)),        stroke = elem.computedAttr('stroke'),        id = elem.computedAttr('id'),        transformPrecision = params.transformPrecision,        newPoint, scale;    if (stroke && stroke != 'none') {        if (!params.applyTransformsStroked ||            (matrix.data[0] != matrix.data[3] || matrix.data[1] != -matrix.data[2]) &&            (matrix.data[0] != -matrix.data[3] || matrix.data[1] != matrix.data[2]))            return path;        // "stroke-width" should be inside the part with ID, otherwise it can be overrided in <use>        if (id) {            var idElem = elem,                hasStrokeWidth = false;            do {                if (idElem.hasAttr('stroke-width')) hasStrokeWidth = true;            } while (!idElem.hasAttr('id', id) && !hasStrokeWidth && (idElem = idElem.parentNode));            if (!hasStrokeWidth) return path;        }        scale = +Math.sqrt(matrix.data[0] * matrix.data[0] + matrix.data[1] * matrix.data[1]).toFixed(transformPrecision);        if (scale !== 1) {            var strokeWidth = elem.computedAttr('stroke-width') || defaultStrokeWidth;            if (!elem.hasAttr('vector-effect') || elem.attr('vector-effect').value !== 'non-scaling-stroke') {                if (elem.hasAttr('stroke-width')) {                    elem.attrs['stroke-width'].value = elem.attrs['stroke-width'].value.trim()                        .replace(regNumericValues, function(num) {                            return removeLeadingZero(num * scale);                        });                } else {                    elem.addAttr({                        name: 'stroke-width',                        prefix: '',                        local: 'stroke-width',                        value: strokeWidth.replace(regNumericValues, function(num) {                            return removeLeadingZero(num * scale);                        })                    });                }            }        }    } else if (id) { // Stroke and stroke-width can be redefined with <use>        return path;    }    path.forEach(function(pathItem) {        if (pathItem.data) {            // h -> l            if (pathItem.instruction === 'h') {                pathItem.instruction = 'l';                pathItem.data[1] = 0;            // v -> l            } else if (pathItem.instruction === 'v') {                pathItem.instruction = 'l';                pathItem.data[1] = pathItem.data[0];                pathItem.data[0] = 0;            }            // if there is a translate() transform            if (pathItem.instruction === 'M' &&                (matrix.data[4] !== 0 ||                matrix.data[5] !== 0)            ) {                // then apply it only to the first absoluted M                newPoint = transformPoint(matrix.data, pathItem.data[0], pathItem.data[1]);                set(pathItem.data, newPoint);                set(pathItem.coords, newPoint);                // clear translate() data from transform matrix                matrix.data[4] = 0;                matrix.data[5] = 0;            } else {                if (pathItem.instruction == 'a') {                    transformArc(pathItem.data, matrix.data);                    // reduce number of digits in rotation angle                    if (Math.abs(pathItem.data[2]) > 80) {                        var a = pathItem.data[0],                            rotation = pathItem.data[2];                        pathItem.data[0] = pathItem.data[1];                        pathItem.data[1] = a;                        pathItem.data[2] = rotation + (rotation > 0 ? -90 : 90);                    }                    newPoint = transformPoint(matrix.data, pathItem.data[5], pathItem.data[6]);                    pathItem.data[5] = newPoint[0];                    pathItem.data[6] = newPoint[1];                } else {                    for (var i = 0; i < pathItem.data.length; i += 2) {                        newPoint = transformPoint(matrix.data, pathItem.data[i], pathItem.data[i + 1]);                        pathItem.data[i] = newPoint[0];                        pathItem.data[i + 1] = newPoint[1];                    }                }                pathItem.coords[0] = pathItem.base[0] + pathItem.data[pathItem.data.length - 2];                pathItem.coords[1] = pathItem.base[1] + pathItem.data[pathItem.data.length - 1];            }        }    });    // remove transform attr    elem.removeAttr('transform');    return path;};/** * Apply transform 3x3 matrix to x-y point. * * @param {Array} matrix transform 3x3 matrix * @param {Array} point x-y point * @return {Array} point with new coordinates */function transformPoint(matrix, x, y) {    return [        matrix[0] * x + matrix[2] * y + matrix[4],        matrix[1] * x + matrix[3] * y + matrix[5]    ];}/** * Compute Cubic Bézie bounding box. * * @see http://processingjs.nihongoresources.com/bezierinfo/ * * @param {Float} xa * @param {Float} ya * @param {Float} xb * @param {Float} yb * @param {Float} xc * @param {Float} yc * @param {Float} xd * @param {Float} yd * * @return {Object} */exports.computeCubicBoundingBox = function(xa, ya, xb, yb, xc, yc, xd, yd) {    var minx = Number.POSITIVE_INFINITY,        miny = Number.POSITIVE_INFINITY,        maxx = Number.NEGATIVE_INFINITY,        maxy = Number.NEGATIVE_INFINITY,        ts,        t,        x,        y,        i;    // X    if (xa < minx) { minx = xa; }    if (xa > maxx) { maxx = xa; }    if (xd < minx) { minx= xd; }    if (xd > maxx) { maxx = xd; }    ts = computeCubicFirstDerivativeRoots(xa, xb, xc, xd);    for (i = 0; i < ts.length; i++) {        t = ts[i];        if (t >= 0 && t <= 1) {            x = computeCubicBaseValue(t, xa, xb, xc, xd);            // y = computeCubicBaseValue(t, ya, yb, yc, yd);            if (x < minx) { minx = x; }            if (x > maxx) { maxx = x; }        }    }    // Y    if (ya < miny) { miny = ya; }    if (ya > maxy) { maxy = ya; }    if (yd < miny) { miny = yd; }    if (yd > maxy) { maxy = yd; }    ts = computeCubicFirstDerivativeRoots(ya, yb, yc, yd);    for (i = 0; i < ts.length; i++) {        t = ts[i];        if (t >= 0 && t <= 1) {            // x = computeCubicBaseValue(t, xa, xb, xc, xd);            y = computeCubicBaseValue(t, ya, yb, yc, yd);            if (y < miny) { miny = y; }            if (y > maxy) { maxy = y; }        }    }    return {        minx: minx,        miny: miny,        maxx: maxx,        maxy: maxy    };};// compute the value for the cubic bezier function at time=tfunction computeCubicBaseValue(t, a, b, c, d) {    var mt = 1 - t;    return mt * mt * mt * a + 3 * mt * mt * t * b + 3 * mt * t * t * c + t * t * t * d;}// compute the value for the first derivative of the cubic bezier function at time=tfunction computeCubicFirstDerivativeRoots(a, b, c, d) {    var result = [-1, -1],        tl = -a + 2 * b - c,        tr = -Math.sqrt(-a * (c - d) + b * b - b * (c + d) + c * c),        dn = -a + 3 * b - 3 * c + d;    if (dn !== 0) {        result[0] = (tl + tr) / dn;        result[1] = (tl - tr) / dn;    }    return result;}/** * Compute Quadratic Bézier bounding box. * * @see http://processingjs.nihongoresources.com/bezierinfo/ * * @param {Float} xa * @param {Float} ya * @param {Float} xb * @param {Float} yb * @param {Float} xc * @param {Float} yc * * @return {Object} */exports.computeQuadraticBoundingBox = function(xa, ya, xb, yb, xc, yc) {    var minx = Number.POSITIVE_INFINITY,        miny = Number.POSITIVE_INFINITY,        maxx = Number.NEGATIVE_INFINITY,        maxy = Number.NEGATIVE_INFINITY,        t,        x,        y;    // X    if (xa < minx) { minx = xa; }    if (xa > maxx) { maxx = xa; }    if (xc < minx) { minx = xc; }    if (xc > maxx) { maxx = xc; }    t = computeQuadraticFirstDerivativeRoot(xa, xb, xc);    if (t >= 0 && t <= 1) {        x = computeQuadraticBaseValue(t, xa, xb, xc);        // y = computeQuadraticBaseValue(t, ya, yb, yc);        if (x < minx) { minx = x; }        if (x > maxx) { maxx = x; }    }    // Y    if (ya < miny) { miny = ya; }    if (ya > maxy) { maxy = ya; }    if (yc < miny) { miny = yc; }    if (yc > maxy) { maxy = yc; }    t = computeQuadraticFirstDerivativeRoot(ya, yb, yc);    if (t >= 0 && t <=1 ) {        // x = computeQuadraticBaseValue(t, xa, xb, xc);        y = computeQuadraticBaseValue(t, ya, yb, yc);        if (y < miny) { miny = y; }        if (y > maxy) { maxy = y ; }    }    return {        minx: minx,        miny: miny,        maxx: maxx,        maxy: maxy    };};// compute the value for the quadratic bezier function at time=tfunction computeQuadraticBaseValue(t, a, b, c) {    var mt = 1 - t;    return mt * mt * a + 2 * mt * t * b + t * t * c;}// compute the value for the first derivative of the quadratic bezier function at time=tfunction computeQuadraticFirstDerivativeRoot(a, b, c) {    var t = -1,        denominator = a - 2 * b + c;    if (denominator !== 0) {        t = (a - b) / denominator;    }    return t;}/** * Convert path array to string. * * @param {Array} path input path data * @param {Object} params plugin params * @return {String} output path string */exports.js2path = function(path, data, params) {    path.pathJS = data;    if (params.collapseRepeated) {        data = collapseRepeated(data);    }    path.attr('d').value = data.reduce(function(pathString, item) {        var strData = '';        if (item.data) {            strData = cleanupOutData(item.data, params, item.instruction);        }        return pathString += item.instruction + strData;    }, '');};/** * Collapse repeated instructions data * * @param {Array} path input path data * @return {Array} output path data */function collapseRepeated(data) {    var prev,        prevIndex;    // copy an array and modifieds item to keep original data untouched    data = data.reduce(function(newPath, item) {        if (            prev && item.data &&            item.instruction == prev.instruction        ) {            // concat previous data with current            if (item.instruction != 'M') {                prev = newPath[prevIndex] = {                    instruction: prev.instruction,                    data: prev.data.concat(item.data),                    coords: item.coords,                    base: prev.base                };            } else {                prev.data = item.data;                prev.coords = item.coords;            }        } else {            newPath.push(item);            prev = item;            prevIndex = newPath.length - 1;        }        return newPath;    }, []);    return data;}function set(dest, source) {    dest[0] = source[source.length - 2];    dest[1] = source[source.length - 1];    return dest;}/** * Checks if two paths have an intersection by checking convex hulls * collision using Gilbert-Johnson-Keerthi distance algorithm * http://entropyinteractive.com/2011/04/gjk-algorithm/ * * @param {Array} path1 JS path representation * @param {Array} path2 JS path representation * @return {Boolean} */exports.intersects = function(path1, path2) {    if (path1.length < 3 || path2.length < 3) return false; // nothing to fill    // Collect points of every subpath.    var points1 = relative2absolute(path1).reduce(gatherPoints, []),        points2 = relative2absolute(path2).reduce(gatherPoints, []);    // Axis-aligned bounding box check.    if (points1.maxX <= points2.minX || points2.maxX <= points1.minX ||        points1.maxY <= points2.minY || points2.maxY <= points1.minY ||        points1.every(function (set1) {            return points2.every(function (set2) {                return set1[set1.maxX][0] <= set2[set2.minX][0] ||                    set2[set2.maxX][0] <= set1[set1.minX][0] ||                    set1[set1.maxY][1] <= set2[set2.minY][1] ||                    set2[set2.maxY][1] <= set1[set1.minY][1];            });        })    ) return false;    // Get a convex hull from points of each subpath. Has the most complexity O(n·log n).    var hullNest1 = points1.map(convexHull),        hullNest2 = points2.map(convexHull);    // Check intersection of every subpath of the first path with every subpath of the second.    return hullNest1.some(function(hull1) {        if (hull1.length < 3) return false;        return hullNest2.some(function(hull2) {            if (hull2.length < 3) return false;            var simplex = [getSupport(hull1, hull2, [1, 0])], // create the initial simplex                direction = minus(simplex[0]); // set the direction to point towards the origin            var iterations = 1e4; // infinite loop protection, 10 000 iterations is more than enough            while (true) {                if (iterations-- == 0) {                    console.error('Error: infinite loop while processing mergePaths plugin.');                    return true; // true is the safe value that means “do nothing with paths”                }                // add a new point                simplex.push(getSupport(hull1, hull2, direction));                // see if the new point was on the correct side of the origin                if (dot(direction, simplex[simplex.length - 1]) <= 0) return false;                // process the simplex                if (processSimplex(simplex, direction)) return true;            }        });    });    function getSupport(a, b, direction) {        return sub(supportPoint(a, direction), supportPoint(b, minus(direction)));    }    // Computes farthest polygon point in particular direction.    // Thanks to knowledge of min/max x and y coordinates we can choose a quadrant to search in.    // Since we're working on convex hull, the dot product is increasing until we find the farthest point.    function supportPoint(polygon, direction) {        var index = direction[1] >= 0 ?                direction[0] < 0 ? polygon.maxY : polygon.maxX :                direction[0] < 0 ? polygon.minX : polygon.minY,            max = -Infinity,            value;        while ((value = dot(polygon[index], direction)) > max) {            max = value;            index = ++index % polygon.length;        }        return polygon[(index || polygon.length) - 1];    }};function processSimplex(simplex, direction) {    /* jshint -W004 */    // we only need to handle to 1-simplex and 2-simplex    if (simplex.length == 2) { // 1-simplex        var a = simplex[1],            b = simplex[0],            AO = minus(simplex[1]),            AB = sub(b, a);        // AO is in the same direction as AB        if (dot(AO, AB) > 0) {            // get the vector perpendicular to AB facing O            set(direction, orth(AB, a));        } else {            set(direction, AO);            // only A remains in the simplex            simplex.shift();        }    } else { // 2-simplex        var a = simplex[2], // [a, b, c] = simplex            b = simplex[1],            c = simplex[0],            AB = sub(b, a),            AC = sub(c, a),            AO = minus(a),            ACB = orth(AB, AC), // the vector perpendicular to AB facing away from C            ABC = orth(AC, AB); // the vector perpendicular to AC facing away from B        if (dot(ACB, AO) > 0) {            if (dot(AB, AO) > 0) { // region 4                set(direction, ACB);                simplex.shift(); // simplex = [b, a]            } else { // region 5                set(direction, AO);                simplex.splice(0, 2); // simplex = [a]            }        } else if (dot(ABC, AO) > 0) {            if (dot(AC, AO) > 0) { // region 6                set(direction, ABC);                simplex.splice(1, 1); // simplex = [c, a]            } else { // region 5 (again)                set(direction, AO);                simplex.splice(0, 2); // simplex = [a]            }        } else // region 7            return true;    }    return false;}function minus(v) {    return [-v[0], -v[1]];}function sub(v1, v2) {    return [v1[0] - v2[0], v1[1] - v2[1]];}function dot(v1, v2) {    return v1[0] * v2[0] + v1[1] * v2[1];}function orth(v, from) {    var o = [-v[1], v[0]];    return dot(o, minus(from)) < 0 ? minus(o) : o;}function gatherPoints(points, item, index, path) {    var subPath = points.length && points[points.length - 1],        prev = index && path[index - 1],        basePoint = subPath.length && subPath[subPath.length - 1],        data = item.data,        ctrlPoint = basePoint;    switch (item.instruction) {        case 'M':            points.push(subPath = []);            break;        case 'H':            addPoint(subPath, [data[0], basePoint[1]]);            break;        case 'V':            addPoint(subPath, [basePoint[0], data[0]]);            break;        case 'Q':            addPoint(subPath, data.slice(0, 2));            prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; // Save control point for shorthand            break;        case 'T':            if (prev.instruction == 'Q' || prev.instruction == 'T') {                ctrlPoint = [basePoint[0] + prevCtrlPoint[0], basePoint[1] + prevCtrlPoint[1]];                addPoint(subPath, ctrlPoint);                prevCtrlPoint = [data[0] - ctrlPoint[0], data[1] - ctrlPoint[1]];            }            break;        case 'C':            // Approximate quibic Bezier curve with middle points between control points            addPoint(subPath, [.5 * (basePoint[0] + data[0]), .5 * (basePoint[1] + data[1])]);            addPoint(subPath, [.5 * (data[0] + data[2]), .5 * (data[1] + data[3])]);            addPoint(subPath, [.5 * (data[2] + data[4]), .5 * (data[3] + data[5])]);            prevCtrlPoint = [data[4] - data[2], data[5] - data[3]]; // Save control point for shorthand            break;        case 'S':            if (prev.instruction == 'C' || prev.instruction == 'S') {                addPoint(subPath, [basePoint[0] + .5 * prevCtrlPoint[0], basePoint[1] + .5 * prevCtrlPoint[1]]);                ctrlPoint = [basePoint[0] + prevCtrlPoint[0], basePoint[1] + prevCtrlPoint[1]];            }            addPoint(subPath, [.5 * (ctrlPoint[0] + data[0]), .5 * (ctrlPoint[1]+ data[1])]);            addPoint(subPath, [.5 * (data[0] + data[2]), .5 * (data[1] + data[3])]);            prevCtrlPoint = [data[2] - data[0], data[3] - data[1]];            break;        case 'A':            // Convert the arc to bezier curves and use the same approximation            var curves = a2c.apply(0, basePoint.concat(data));            for (var cData; (cData = curves.splice(0,6).map(toAbsolute)).length;) {                addPoint(subPath, [.5 * (basePoint[0] + cData[0]), .5 * (basePoint[1] + cData[1])]);                addPoint(subPath, [.5 * (cData[0] + cData[2]), .5 * (cData[1] + cData[3])]);                addPoint(subPath, [.5 * (cData[2] + cData[4]), .5 * (cData[3] + cData[5])]);                if (curves.length) addPoint(subPath, basePoint = cData.slice(-2));            }            break;    }    // Save final command coordinates    if (data && data.length >= 2) addPoint(subPath, data.slice(-2));    return points;    function toAbsolute(n, i) { return n + basePoint[i % 2] }    // Writes data about the extreme points on each axle    function addPoint(path, point) {        if (!path.length || point[1] > path[path.maxY][1]) {            path.maxY = path.length;            points.maxY = points.length ? Math.max(point[1], points.maxY) : point[1];        }        if (!path.length || point[0] > path[path.maxX][0]) {            path.maxX = path.length;            points.maxX = points.length ? Math.max(point[0], points.maxX) : point[0];        }        if (!path.length || point[1] < path[path.minY][1]) {            path.minY = path.length;            points.minY = points.length ? Math.min(point[1], points.minY) : point[1];        }        if (!path.length || point[0] < path[path.minX][0]) {            path.minX = path.length;            points.minX = points.length ? Math.min(point[0], points.minX) : point[0];        }        path.push(point);    }}/** * Forms a convex hull from set of points of every subpath using monotone chain convex hull algorithm. * http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain * * @param points An array of [X, Y] coordinates */function convexHull(points) {    /* jshint -W004 */    points.sort(function(a, b) {        return a[0] == b[0] ? a[1] - b[1] : a[0] - b[0];    });    var lower = [],        minY = 0,        bottom = 0;    for (var i = 0; i < points.length; i++) {        while (lower.length >= 2 && cross(lower[lower.length - 2], lower[lower.length - 1], points[i]) <= 0) {            lower.pop();        }        if (points[i][1] < points[minY][1]) {            minY = i;            bottom = lower.length;        }        lower.push(points[i]);    }    var upper = [],        maxY = points.length - 1,        top = 0;    for (var i = points.length; i--;) {        while (upper.length >= 2 && cross(upper[upper.length - 2], upper[upper.length - 1], points[i]) <= 0) {            upper.pop();        }        if (points[i][1] > points[maxY][1]) {            maxY = i;            top = upper.length;        }        upper.push(points[i]);    }    // last points are equal to starting points of the other part    upper.pop();    lower.pop();    var hull = lower.concat(upper);    hull.minX = 0; // by sorting    hull.maxX = lower.length;    hull.minY = bottom;    hull.maxY = (lower.length + top) % hull.length;    return hull;}function cross(o, a, b) {    return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);}/* Based on code from Snap.svg (Apache 2 license). http://snapsvg.io/ * Thanks to Dmitry Baranovskiy for his great work! */// jshint ignore: startfunction a2c(x1, y1, rx, ry, angle, large_arc_flag, sweep_flag, x2, y2, recursive) {    // for more information of where this Math came from visit:    // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes    var _120 = Math.PI * 120 / 180,        rad = Math.PI / 180 * (+angle || 0),        res = [],        rotateX = function(x, y, rad) { return x * Math.cos(rad) - y * Math.sin(rad) },        rotateY = function(x, y, rad) { return x * Math.sin(rad) + y * Math.cos(rad) };    if (!recursive) {        x1 = rotateX(x1, y1, -rad);        y1 = rotateY(x1, y1, -rad);        x2 = rotateX(x2, y2, -rad);        y2 = rotateY(x2, y2, -rad);        var x = (x1 - x2) / 2,            y = (y1 - y2) / 2;        var h = (x * x) / (rx * rx) + (y * y) / (ry * ry);        if (h > 1) {            h = Math.sqrt(h);            rx = h * rx;            ry = h * ry;        }        var rx2 = rx * rx,            ry2 = ry * ry,            k = (large_arc_flag == sweep_flag ? -1 : 1) *                Math.sqrt(Math.abs((rx2 * ry2 - rx2 * y * y - ry2 * x * x) / (rx2 * y * y + ry2 * x * x))),            cx = k * rx * y / ry + (x1 + x2) / 2,            cy = k * -ry * x / rx + (y1 + y2) / 2,            f1 = Math.asin(((y1 - cy) / ry).toFixed(9)),            f2 = Math.asin(((y2 - cy) / ry).toFixed(9));        f1 = x1 < cx ? Math.PI - f1 : f1;        f2 = x2 < cx ? Math.PI - f2 : f2;        f1 < 0 && (f1 = Math.PI * 2 + f1);        f2 < 0 && (f2 = Math.PI * 2 + f2);        if (sweep_flag && f1 > f2) {            f1 = f1 - Math.PI * 2;        }        if (!sweep_flag && f2 > f1) {            f2 = f2 - Math.PI * 2;        }    } else {        f1 = recursive[0];        f2 = recursive[1];        cx = recursive[2];        cy = recursive[3];    }    var df = f2 - f1;    if (Math.abs(df) > _120) {        var f2old = f2,            x2old = x2,            y2old = y2;        f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1);        x2 = cx + rx * Math.cos(f2);        y2 = cy + ry * Math.sin(f2);        res = a2c(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [f2, f2old, cx, cy]);    }    df = f2 - f1;    var c1 = Math.cos(f1),        s1 = Math.sin(f1),        c2 = Math.cos(f2),        s2 = Math.sin(f2),        t = Math.tan(df / 4),        hx = 4 / 3 * rx * t,        hy = 4 / 3 * ry * t,        m = [            - hx * s1, hy * c1,            x2 + hx * s2 - x1, y2 - hy * c2 - y1,            x2 - x1, y2 - y1        ];    if (recursive) {        return m.concat(res);    } else {        res = m.concat(res);        var newres = [];        for (var i = 0, n = res.length; i < n; i++) {            newres[i] = i % 2 ? rotateY(res[i - 1], res[i], rad) : rotateX(res[i], res[i + 1], rad);        }        return newres;    }}// jshint ignore: end
 |