| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 | 'use strict';var regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/,    regTransformSplit = /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/,    regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;/** * Convert transform string to JS representation. * * @param {String} transformString input string * @param {Object} params plugin params * @return {Array} output array */exports.transform2js = function(transformString) {        // JS representation of the transform data    var transforms = [],        // current transform context        current;    // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']    transformString.split(regTransformSplit).forEach(function(item) {        /*jshint -W084 */        var num;        if (item) {            // if item is a translate function            if (regTransformTypes.test(item)) {                // then collect it and change current context                transforms.push(current = { name: item });            // else if item is data            } else {                // then split it into [10, 50] and collect as context.data                while (num = regNumericValues.exec(item)) {                    num = Number(num);                    if (current.data)                        current.data.push(num);                    else                        current.data = [num];                }            }        }    });    // return empty array if broken transform (no data)    return current && current.data ? transforms : [];};/** * Multiply transforms into one. * * @param {Array} input transforms array * @return {Array} output matrix array */exports.transformsMultiply = function(transforms) {    // convert transforms objects to the matrices    transforms = transforms.map(function(transform) {        if (transform.name === 'matrix') {            return transform.data;        }        return transformToMatrix(transform);    });    // multiply all matrices into one    transforms = {        name: 'matrix',        data: transforms.length > 0 ? transforms.reduce(multiplyTransformMatrices) : []    };    return transforms;};/** * Do math like a schoolgirl. * * @type {Object} */var mth = exports.mth = {    rad: function(deg) {        return deg * Math.PI / 180;    },    deg: function(rad) {        return rad * 180 / Math.PI;    },    cos: function(deg) {        return Math.cos(this.rad(deg));    },    acos: function(val, floatPrecision) {        return +(this.deg(Math.acos(val)).toFixed(floatPrecision));    },    sin: function(deg) {        return Math.sin(this.rad(deg));    },    asin: function(val, floatPrecision) {        return +(this.deg(Math.asin(val)).toFixed(floatPrecision));    },    tan: function(deg) {        return Math.tan(this.rad(deg));    },    atan: function(val, floatPrecision) {        return +(this.deg(Math.atan(val)).toFixed(floatPrecision));    }};/** * Decompose matrix into simple transforms. See * http://frederic-wang.fr/decomposition-of-2d-transform-matrices.html * * @param {Object} data matrix transform object * @return {Object|Array} transforms array or original transform object */exports.matrixToTransform = function(transform, params) {    var floatPrecision = params.floatPrecision,        data = transform.data,        transforms = [],        sx = +Math.hypot(data[0], data[1]).toFixed(params.transformPrecision),        sy = +((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(params.transformPrecision),        colsSum = data[0] * data[2] + data[1] * data[3],        rowsSum = data[0] * data[1] + data[2] * data[3],        scaleBefore = rowsSum != 0 || sx == sy;    // [..., ..., ..., ..., tx, ty] → translate(tx, ty)    if (data[4] || data[5]) {        transforms.push({ name: 'translate', data: data.slice(4, data[5] ? 6 : 5) });    }    // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)    if (!data[1] && data[2]) {        transforms.push({ name: 'skewX', data: [mth.atan(data[2] / sy, floatPrecision)] });    // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)    } else if (data[1] && !data[2]) {        transforms.push({ name: 'skewY', data: [mth.atan(data[1] / data[0], floatPrecision)] });        sx = data[0];        sy = data[3];    // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or    // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)    } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {        if (!scaleBefore) {            sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);            sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);            transforms.push({ name: 'scale', data: [sx, sy] });        }        var angle = Math.min(Math.max(-1, data[0] / sx), 1),            rotate = [mth.acos(angle, floatPrecision) * ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1)];        if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });        if (rowsSum && colsSum) transforms.push({            name: 'skewX',            data: [mth.atan(colsSum / (sx * sx), floatPrecision)]        });        // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)        if (rotate[0] && (data[4] || data[5])) {            transforms.shift();            var cos = data[0] / sx,                sin = data[1] / (scaleBefore ? sx : sy),                x = data[4] * (scaleBefore || sy),                y = data[5] * (scaleBefore || sx),                denom = (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) * (scaleBefore || sx * sy);            rotate.push(((1 - cos) * x - sin * y) / denom);            rotate.push(((1 - cos) * y + sin * x) / denom);        }    // Too many transformations, return original matrix if it isn't just a scale/translate    } else if (data[1] || data[2]) {        return transform;    }    if (scaleBefore && (sx != 1 || sy != 1) || !transforms.length) transforms.push({        name: 'scale',        data: sx == sy ? [sx] : [sx, sy]    });    return transforms;};/** * Convert transform to the matrix data. * * @param {Object} transform transform object * @return {Array} matrix data */function transformToMatrix(transform) {    if (transform.name === 'matrix') return transform.data;    var matrix;    switch (transform.name) {        case 'translate':            // [1, 0, 0, 1, tx, ty]            matrix = [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];            break;        case 'scale':            // [sx, 0, 0, sy, 0, 0]            matrix = [transform.data[0], 0, 0, transform.data[1] || transform.data[0], 0, 0];            break;        case 'rotate':            // [cos(a), sin(a), -sin(a), cos(a), x, y]            var cos = mth.cos(transform.data[0]),                sin = mth.sin(transform.data[0]),                cx = transform.data[1] || 0,                cy = transform.data[2] || 0;            matrix = [cos, sin, -sin, cos, (1 - cos) * cx + sin * cy, (1 - cos) * cy - sin * cx];            break;        case 'skewX':            // [1, 0, tan(a), 1, 0, 0]            matrix = [1, 0, mth.tan(transform.data[0]), 1, 0, 0];            break;        case 'skewY':            // [1, tan(a), 0, 1, 0, 0]            matrix = [1, mth.tan(transform.data[0]), 0, 1, 0, 0];            break;    }    return matrix;}/** * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it * by the transformation matrix and use a singular value decomposition to represent in a form * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ. * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}}) * * @param {Array} arc [a, b, rotation in deg] * @param {Array} transform transformation matrix * @return {Array} arc transformed input arc */exports.transformArc = function(arc, transform) {    var a = arc[0],        b = arc[1],        rot = arc[2] * Math.PI / 180,        cos = Math.cos(rot),        sin = Math.sin(rot),        h = Math.pow(arc[5] * cos + arc[6] * sin, 2) / (4 * a * a) +            Math.pow(arc[6] * cos - arc[5] * sin, 2) / (4 * b * b);    if (h > 1) {        h = Math.sqrt(h);        a *= h;        b *= h;    }    var ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0],        m = multiplyTransformMatrices(transform, ellipse),        // Decompose the new ellipse matrix        lastCol = m[2] * m[2] + m[3] * m[3],        squareSum = m[0] * m[0] + m[1] * m[1] + lastCol,        root = Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);    if (!root) { // circle        arc[0] = arc[1] = Math.sqrt(squareSum / 2);        arc[2] = 0;    } else {        var majorAxisSqr = (squareSum + root) / 2,            minorAxisSqr = (squareSum - root) / 2,            major = Math.abs(majorAxisSqr - lastCol) > 1e-6,            sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol,            rowsSum = m[0] * m[2] + m[1] * m[3],            term1 = m[0] * sub + m[2] * rowsSum,            term2 = m[1] * sub + m[3] * rowsSum;        arc[0] = Math.sqrt(majorAxisSqr);        arc[1] = Math.sqrt(minorAxisSqr);        arc[2] = ((major ? term2 < 0 : term1 > 0) ? -1 : 1) *            Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) * 180 / Math.PI;    }    if ((transform[0] < 0) !== (transform[3] < 0)) {        // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically        arc[4] = 1 - arc[4];    }    return arc;};/** * Multiply transformation matrices. * * @param {Array} a matrix A data * @param {Array} b matrix B data * @return {Array} result */function multiplyTransformMatrices(a, b) {    return [        a[0] * b[0] + a[2] * b[1],        a[1] * b[0] + a[3] * b[1],        a[0] * b[2] + a[2] * b[3],        a[1] * b[2] + a[3] * b[3],        a[0] * b[4] + a[2] * b[5] + a[4],        a[1] * b[4] + a[3] * b[5] + a[5]    ];}
 |