| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264 | // Copyright (c) 2005  Tom Wu// All Rights Reserved.// See "LICENSE" for details.// Basic JavaScript BN library - subset useful for RSA encryption./*Licensing (LICENSE)-------------------This software is covered under the following copyright:*//* * Copyright (c) 2003-2005  Tom Wu * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * In addition, the following condition applies: * * All redistributions must retain an intact copy of this copyright notice * and disclaimer. *//*Address all questions regarding this license to:  Tom Wu  tjw@cs.Stanford.EDU*/var forge = require('./forge');module.exports = forge.jsbn = forge.jsbn || {};// Bits per digitvar dbits;// JavaScript engine analysisvar canary = 0xdeadbeefcafe;var j_lm = ((canary&0xffffff)==0xefcafe);// (public) Constructorfunction BigInteger(a,b,c) {  this.data = [];  if(a != null)    if("number" == typeof a) this.fromNumber(a,b,c);    else if(b == null && "string" != typeof a) this.fromString(a,256);    else this.fromString(a,b);}forge.jsbn.BigInteger = BigInteger;// return new, unset BigIntegerfunction nbi() { return new BigInteger(null); }// am: Compute w_j += (x*this_i), propagate carries,// c is initial carry, returns final carry.// c < 3*dvalue, x < 2*dvalue, this_i < dvalue// We need to select the fastest one that works in this environment.// am1: use a single mult and divide to get the high bits,// max digit bits should be 26 because// max internal value = 2*dvalue^2-2*dvalue (< 2^53)function am1(i,x,w,j,c,n) {  while(--n >= 0) {    var v = x*this.data[i++]+w.data[j]+c;    c = Math.floor(v/0x4000000);    w.data[j++] = v&0x3ffffff;  }  return c;}// am2 avoids a big mult-and-extract completely.// Max digit bits should be <= 30 because we do bitwise ops// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)function am2(i,x,w,j,c,n) {  var xl = x&0x7fff, xh = x>>15;  while(--n >= 0) {    var l = this.data[i]&0x7fff;    var h = this.data[i++]>>15;    var m = xh*l+h*xl;    l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff);    c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);    w.data[j++] = l&0x3fffffff;  }  return c;}// Alternately, set max digit bits to 28 since some// browsers slow down when dealing with 32-bit numbers.function am3(i,x,w,j,c,n) {  var xl = x&0x3fff, xh = x>>14;  while(--n >= 0) {    var l = this.data[i]&0x3fff;    var h = this.data[i++]>>14;    var m = xh*l+h*xl;    l = xl*l+((m&0x3fff)<<14)+w.data[j]+c;    c = (l>>28)+(m>>14)+xh*h;    w.data[j++] = l&0xfffffff;  }  return c;}// node.js (no browser)if(typeof(navigator) === 'undefined'){   BigInteger.prototype.am = am3;   dbits = 28;} else if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {  BigInteger.prototype.am = am2;  dbits = 30;} else if(j_lm && (navigator.appName != "Netscape")) {  BigInteger.prototype.am = am1;  dbits = 26;} else { // Mozilla/Netscape seems to prefer am3  BigInteger.prototype.am = am3;  dbits = 28;}BigInteger.prototype.DB = dbits;BigInteger.prototype.DM = ((1<<dbits)-1);BigInteger.prototype.DV = (1<<dbits);var BI_FP = 52;BigInteger.prototype.FV = Math.pow(2,BI_FP);BigInteger.prototype.F1 = BI_FP-dbits;BigInteger.prototype.F2 = 2*dbits-BI_FP;// Digit conversionsvar BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";var BI_RC = new Array();var rr,vv;rr = "0".charCodeAt(0);for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;rr = "a".charCodeAt(0);for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;rr = "A".charCodeAt(0);for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;function int2char(n) { return BI_RM.charAt(n); }function intAt(s,i) {  var c = BI_RC[s.charCodeAt(i)];  return (c==null)?-1:c;}// (protected) copy this to rfunction bnpCopyTo(r) {  for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i];  r.t = this.t;  r.s = this.s;}// (protected) set from integer value x, -DV <= x < DVfunction bnpFromInt(x) {  this.t = 1;  this.s = (x<0)?-1:0;  if(x > 0) this.data[0] = x;  else if(x < -1) this.data[0] = x+this.DV;  else this.t = 0;}// return bigint initialized to valuefunction nbv(i) { var r = nbi(); r.fromInt(i); return r; }// (protected) set from string and radixfunction bnpFromString(s,b) {  var k;  if(b == 16) k = 4;  else if(b == 8) k = 3;  else if(b == 256) k = 8; // byte array  else if(b == 2) k = 1;  else if(b == 32) k = 5;  else if(b == 4) k = 2;  else { this.fromRadix(s,b); return; }  this.t = 0;  this.s = 0;  var i = s.length, mi = false, sh = 0;  while(--i >= 0) {    var x = (k==8)?s[i]&0xff:intAt(s,i);    if(x < 0) {      if(s.charAt(i) == "-") mi = true;      continue;    }    mi = false;    if(sh == 0)      this.data[this.t++] = x;    else if(sh+k > this.DB) {      this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;      this.data[this.t++] = (x>>(this.DB-sh));    } else      this.data[this.t-1] |= x<<sh;    sh += k;    if(sh >= this.DB) sh -= this.DB;  }  if(k == 8 && (s[0]&0x80) != 0) {    this.s = -1;    if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;  }  this.clamp();  if(mi) BigInteger.ZERO.subTo(this,this);}// (protected) clamp off excess high wordsfunction bnpClamp() {  var c = this.s&this.DM;  while(this.t > 0 && this.data[this.t-1] == c) --this.t;}// (public) return string representation in given radixfunction bnToString(b) {  if(this.s < 0) return "-"+this.negate().toString(b);  var k;  if(b == 16) k = 4;  else if(b == 8) k = 3;  else if(b == 2) k = 1;  else if(b == 32) k = 5;  else if(b == 4) k = 2;  else return this.toRadix(b);  var km = (1<<k)-1, d, m = false, r = "", i = this.t;  var p = this.DB-(i*this.DB)%k;  if(i-- > 0) {    if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); }    while(i >= 0) {      if(p < k) {        d = (this.data[i]&((1<<p)-1))<<(k-p);        d |= this.data[--i]>>(p+=this.DB-k);      } else {        d = (this.data[i]>>(p-=k))&km;        if(p <= 0) { p += this.DB; --i; }      }      if(d > 0) m = true;      if(m) r += int2char(d);    }  }  return m?r:"0";}// (public) -thisfunction bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }// (public) |this|function bnAbs() { return (this.s<0)?this.negate():this; }// (public) return + if this > a, - if this < a, 0 if equalfunction bnCompareTo(a) {  var r = this.s-a.s;  if(r != 0) return r;  var i = this.t;  r = i-a.t;  if(r != 0) return (this.s<0)?-r:r;  while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r;  return 0;}// returns bit length of the integer xfunction nbits(x) {  var r = 1, t;  if((t=x>>>16) != 0) { x = t; r += 16; }  if((t=x>>8) != 0) { x = t; r += 8; }  if((t=x>>4) != 0) { x = t; r += 4; }  if((t=x>>2) != 0) { x = t; r += 2; }  if((t=x>>1) != 0) { x = t; r += 1; }  return r;}// (public) return the number of bits in "this"function bnBitLength() {  if(this.t <= 0) return 0;  return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM));}// (protected) r = this << n*DBfunction bnpDLShiftTo(n,r) {  var i;  for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i];  for(i = n-1; i >= 0; --i) r.data[i] = 0;  r.t = this.t+n;  r.s = this.s;}// (protected) r = this >> n*DBfunction bnpDRShiftTo(n,r) {  for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i];  r.t = Math.max(this.t-n,0);  r.s = this.s;}// (protected) r = this << nfunction bnpLShiftTo(n,r) {  var bs = n%this.DB;  var cbs = this.DB-bs;  var bm = (1<<cbs)-1;  var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;  for(i = this.t-1; i >= 0; --i) {    r.data[i+ds+1] = (this.data[i]>>cbs)|c;    c = (this.data[i]&bm)<<bs;  }  for(i = ds-1; i >= 0; --i) r.data[i] = 0;  r.data[ds] = c;  r.t = this.t+ds+1;  r.s = this.s;  r.clamp();}// (protected) r = this >> nfunction bnpRShiftTo(n,r) {  r.s = this.s;  var ds = Math.floor(n/this.DB);  if(ds >= this.t) { r.t = 0; return; }  var bs = n%this.DB;  var cbs = this.DB-bs;  var bm = (1<<bs)-1;  r.data[0] = this.data[ds]>>bs;  for(var i = ds+1; i < this.t; ++i) {    r.data[i-ds-1] |= (this.data[i]&bm)<<cbs;    r.data[i-ds] = this.data[i]>>bs;  }  if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs;  r.t = this.t-ds;  r.clamp();}// (protected) r = this - afunction bnpSubTo(a,r) {  var i = 0, c = 0, m = Math.min(a.t,this.t);  while(i < m) {    c += this.data[i]-a.data[i];    r.data[i++] = c&this.DM;    c >>= this.DB;  }  if(a.t < this.t) {    c -= a.s;    while(i < this.t) {      c += this.data[i];      r.data[i++] = c&this.DM;      c >>= this.DB;    }    c += this.s;  } else {    c += this.s;    while(i < a.t) {      c -= a.data[i];      r.data[i++] = c&this.DM;      c >>= this.DB;    }    c -= a.s;  }  r.s = (c<0)?-1:0;  if(c < -1) r.data[i++] = this.DV+c;  else if(c > 0) r.data[i++] = c;  r.t = i;  r.clamp();}// (protected) r = this * a, r != this,a (HAC 14.12)// "this" should be the larger one if appropriate.function bnpMultiplyTo(a,r) {  var x = this.abs(), y = a.abs();  var i = x.t;  r.t = i+y.t;  while(--i >= 0) r.data[i] = 0;  for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t);  r.s = 0;  r.clamp();  if(this.s != a.s) BigInteger.ZERO.subTo(r,r);}// (protected) r = this^2, r != this (HAC 14.16)function bnpSquareTo(r) {  var x = this.abs();  var i = r.t = 2*x.t;  while(--i >= 0) r.data[i] = 0;  for(i = 0; i < x.t-1; ++i) {    var c = x.am(i,x.data[i],r,2*i,0,1);    if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {      r.data[i+x.t] -= x.DV;      r.data[i+x.t+1] = 1;    }  }  if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1);  r.s = 0;  r.clamp();}// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)// r != q, this != m.  q or r may be null.function bnpDivRemTo(m,q,r) {  var pm = m.abs();  if(pm.t <= 0) return;  var pt = this.abs();  if(pt.t < pm.t) {    if(q != null) q.fromInt(0);    if(r != null) this.copyTo(r);    return;  }  if(r == null) r = nbi();  var y = nbi(), ts = this.s, ms = m.s;  var nsh = this.DB-nbits(pm.data[pm.t-1]);	// normalize modulus  if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); }  var ys = y.t;  var y0 = y.data[ys-1];  if(y0 == 0) return;  var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0);  var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;  var i = r.t, j = i-ys, t = (q==null)?nbi():q;  y.dlShiftTo(j,t);  if(r.compareTo(t) >= 0) {    r.data[r.t++] = 1;    r.subTo(t,r);  }  BigInteger.ONE.dlShiftTo(ys,t);  t.subTo(y,y);	// "negative" y so we can replace sub with am later  while(y.t < ys) y.data[y.t++] = 0;  while(--j >= 0) {    // Estimate quotient digit    var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2);    if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out      y.dlShiftTo(j,t);      r.subTo(t,r);      while(r.data[i] < --qd) r.subTo(t,r);    }  }  if(q != null) {    r.drShiftTo(ys,q);    if(ts != ms) BigInteger.ZERO.subTo(q,q);  }  r.t = ys;  r.clamp();  if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder  if(ts < 0) BigInteger.ZERO.subTo(r,r);}// (public) this mod afunction bnMod(a) {  var r = nbi();  this.abs().divRemTo(a,null,r);  if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);  return r;}// Modular reduction using "classic" algorithmfunction Classic(m) { this.m = m; }function cConvert(x) {  if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);  else return x;}function cRevert(x) { return x; }function cReduce(x) { x.divRemTo(this.m,null,x); }function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }Classic.prototype.convert = cConvert;Classic.prototype.revert = cRevert;Classic.prototype.reduce = cReduce;Classic.prototype.mulTo = cMulTo;Classic.prototype.sqrTo = cSqrTo;// (protected) return "-1/this % 2^DB"; useful for Mont. reduction// justification://         xy == 1 (mod m)//         xy =  1+km//   xy(2-xy) = (1+km)(1-km)// x[y(2-xy)] = 1-k^2m^2// x[y(2-xy)] == 1 (mod m^2)// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.// JS multiply "overflows" differently from C/C++, so care is needed here.function bnpInvDigit() {  if(this.t < 1) return 0;  var x = this.data[0];  if((x&1) == 0) return 0;  var y = x&3;		// y == 1/x mod 2^2  y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4  y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8  y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16  // last step - calculate inverse mod DV directly;  // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints  y = (y*(2-x*y%this.DV))%this.DV;		// y == 1/x mod 2^dbits  // we really want the negative inverse, and -DV < y < DV  return (y>0)?this.DV-y:-y;}// Montgomery reductionfunction Montgomery(m) {  this.m = m;  this.mp = m.invDigit();  this.mpl = this.mp&0x7fff;  this.mph = this.mp>>15;  this.um = (1<<(m.DB-15))-1;  this.mt2 = 2*m.t;}// xR mod mfunction montConvert(x) {  var r = nbi();  x.abs().dlShiftTo(this.m.t,r);  r.divRemTo(this.m,null,r);  if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);  return r;}// x/R mod mfunction montRevert(x) {  var r = nbi();  x.copyTo(r);  this.reduce(r);  return r;}// x = x/R mod m (HAC 14.32)function montReduce(x) {  while(x.t <= this.mt2)	// pad x so am has enough room later    x.data[x.t++] = 0;  for(var i = 0; i < this.m.t; ++i) {    // faster way of calculating u0 = x.data[i]*mp mod DV    var j = x.data[i]&0x7fff;    var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM;    // use am to combine the multiply-shift-add into one call    j = i+this.m.t;    x.data[j] += this.m.am(0,u0,x,i,0,this.m.t);    // propagate carry    while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; }  }  x.clamp();  x.drShiftTo(this.m.t,x);  if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);}// r = "x^2/R mod m"; x != rfunction montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }// r = "xy/R mod m"; x,y != rfunction montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }Montgomery.prototype.convert = montConvert;Montgomery.prototype.revert = montRevert;Montgomery.prototype.reduce = montReduce;Montgomery.prototype.mulTo = montMulTo;Montgomery.prototype.sqrTo = montSqrTo;// (protected) true iff this is evenfunction bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; }// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)function bnpExp(e,z) {  if(e > 0xffffffff || e < 1) return BigInteger.ONE;  var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;  g.copyTo(r);  while(--i >= 0) {    z.sqrTo(r,r2);    if((e&(1<<i)) > 0) z.mulTo(r2,g,r);    else { var t = r; r = r2; r2 = t; }  }  return z.revert(r);}// (public) this^e % m, 0 <= e < 2^32function bnModPowInt(e,m) {  var z;  if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);  return this.exp(e,z);}// protectedBigInteger.prototype.copyTo = bnpCopyTo;BigInteger.prototype.fromInt = bnpFromInt;BigInteger.prototype.fromString = bnpFromString;BigInteger.prototype.clamp = bnpClamp;BigInteger.prototype.dlShiftTo = bnpDLShiftTo;BigInteger.prototype.drShiftTo = bnpDRShiftTo;BigInteger.prototype.lShiftTo = bnpLShiftTo;BigInteger.prototype.rShiftTo = bnpRShiftTo;BigInteger.prototype.subTo = bnpSubTo;BigInteger.prototype.multiplyTo = bnpMultiplyTo;BigInteger.prototype.squareTo = bnpSquareTo;BigInteger.prototype.divRemTo = bnpDivRemTo;BigInteger.prototype.invDigit = bnpInvDigit;BigInteger.prototype.isEven = bnpIsEven;BigInteger.prototype.exp = bnpExp;// publicBigInteger.prototype.toString = bnToString;BigInteger.prototype.negate = bnNegate;BigInteger.prototype.abs = bnAbs;BigInteger.prototype.compareTo = bnCompareTo;BigInteger.prototype.bitLength = bnBitLength;BigInteger.prototype.mod = bnMod;BigInteger.prototype.modPowInt = bnModPowInt;// "constants"BigInteger.ZERO = nbv(0);BigInteger.ONE = nbv(1);// jsbn2 lib//Copyright (c) 2005-2009  Tom Wu//All Rights Reserved.//See "LICENSE" for details (See jsbn.js for LICENSE).//Extended JavaScript BN functions, required for RSA private ops.//Version 1.1: new BigInteger("0", 10) returns "proper" zero//(public)function bnClone() { var r = nbi(); this.copyTo(r); return r; }//(public) return value as integerfunction bnIntValue() {if(this.s < 0) { if(this.t == 1) return this.data[0]-this.DV; else if(this.t == 0) return -1;} else if(this.t == 1) return this.data[0];else if(this.t == 0) return 0;// assumes 16 < DB < 32return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0];}//(public) return value as bytefunction bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; }//(public) return value as short (assumes DB>=16)function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; }//(protected) return x s.t. r^x < DVfunction bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }//(public) 0 if this == 0, 1 if this > 0function bnSigNum() {if(this.s < 0) return -1;else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0;else return 1;}//(protected) convert to radix stringfunction bnpToRadix(b) {if(b == null) b = 10;if(this.signum() == 0 || b < 2 || b > 36) return "0";var cs = this.chunkSize(b);var a = Math.pow(b,cs);var d = nbv(a), y = nbi(), z = nbi(), r = "";this.divRemTo(d,y,z);while(y.signum() > 0) { r = (a+z.intValue()).toString(b).substr(1) + r; y.divRemTo(d,y,z);}return z.intValue().toString(b) + r;}//(protected) convert from radix stringfunction bnpFromRadix(s,b) {this.fromInt(0);if(b == null) b = 10;var cs = this.chunkSize(b);var d = Math.pow(b,cs), mi = false, j = 0, w = 0;for(var i = 0; i < s.length; ++i) { var x = intAt(s,i); if(x < 0) {   if(s.charAt(i) == "-" && this.signum() == 0) mi = true;   continue; } w = b*w+x; if(++j >= cs) {   this.dMultiply(d);   this.dAddOffset(w,0);   j = 0;   w = 0; }}if(j > 0) { this.dMultiply(Math.pow(b,j)); this.dAddOffset(w,0);}if(mi) BigInteger.ZERO.subTo(this,this);}//(protected) alternate constructorfunction bnpFromNumber(a,b,c) {if("number" == typeof b) { // new BigInteger(int,int,RNG) if(a < 2) this.fromInt(1); else {   this.fromNumber(a,c);   if(!this.testBit(a-1))  // force MSB set     this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);   if(this.isEven()) this.dAddOffset(1,0); // force odd   while(!this.isProbablePrime(b)) {     this.dAddOffset(2,0);     if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);   } }} else { // new BigInteger(int,RNG) var x = new Array(), t = a&7; x.length = (a>>3)+1; b.nextBytes(x); if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; this.fromString(x,256);}}//(public) convert to bigendian byte arrayfunction bnToByteArray() {var i = this.t, r = new Array();r[0] = this.s;var p = this.DB-(i*this.DB)%8, d, k = 0;if(i-- > 0) { if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p)   r[k++] = d|(this.s<<(this.DB-p)); while(i >= 0) {   if(p < 8) {     d = (this.data[i]&((1<<p)-1))<<(8-p);     d |= this.data[--i]>>(p+=this.DB-8);   } else {     d = (this.data[i]>>(p-=8))&0xff;     if(p <= 0) { p += this.DB; --i; }   }   if((d&0x80) != 0) d |= -256;   if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;   if(k > 0 || d != this.s) r[k++] = d; }}return r;}function bnEquals(a) { return(this.compareTo(a)==0); }function bnMin(a) { return(this.compareTo(a)<0)?this:a; }function bnMax(a) { return(this.compareTo(a)>0)?this:a; }//(protected) r = this op a (bitwise)function bnpBitwiseTo(a,op,r) {var i, f, m = Math.min(a.t,this.t);for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]);if(a.t < this.t) { f = a.s&this.DM; for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f); r.t = this.t;} else { f = this.s&this.DM; for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]); r.t = a.t;}r.s = op(this.s,a.s);r.clamp();}//(public) this & afunction op_and(x,y) { return x&y; }function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }//(public) this | afunction op_or(x,y) { return x|y; }function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }//(public) this ^ afunction op_xor(x,y) { return x^y; }function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }//(public) this & ~afunction op_andnot(x,y) { return x&~y; }function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }//(public) ~thisfunction bnNot() {var r = nbi();for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i];r.t = this.t;r.s = ~this.s;return r;}//(public) this << nfunction bnShiftLeft(n) {var r = nbi();if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);return r;}//(public) this >> nfunction bnShiftRight(n) {var r = nbi();if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);return r;}//return index of lowest 1-bit in x, x < 2^31function lbit(x) {if(x == 0) return -1;var r = 0;if((x&0xffff) == 0) { x >>= 16; r += 16; }if((x&0xff) == 0) { x >>= 8; r += 8; }if((x&0xf) == 0) { x >>= 4; r += 4; }if((x&3) == 0) { x >>= 2; r += 2; }if((x&1) == 0) ++r;return r;}//(public) returns index of lowest 1-bit (or -1 if none)function bnGetLowestSetBit() {for(var i = 0; i < this.t; ++i) if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]);if(this.s < 0) return this.t*this.DB;return -1;}//return number of 1 bits in xfunction cbit(x) {var r = 0;while(x != 0) { x &= x-1; ++r; }return r;}//(public) return number of set bitsfunction bnBitCount() {var r = 0, x = this.s&this.DM;for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x);return r;}//(public) true iff nth bit is setfunction bnTestBit(n) {var j = Math.floor(n/this.DB);if(j >= this.t) return(this.s!=0);return((this.data[j]&(1<<(n%this.DB)))!=0);}//(protected) this op (1<<n)function bnpChangeBit(n,op) {var r = BigInteger.ONE.shiftLeft(n);this.bitwiseTo(r,op,r);return r;}//(public) this | (1<<n)function bnSetBit(n) { return this.changeBit(n,op_or); }//(public) this & ~(1<<n)function bnClearBit(n) { return this.changeBit(n,op_andnot); }//(public) this ^ (1<<n)function bnFlipBit(n) { return this.changeBit(n,op_xor); }//(protected) r = this + afunction bnpAddTo(a,r) {var i = 0, c = 0, m = Math.min(a.t,this.t);while(i < m) { c += this.data[i]+a.data[i]; r.data[i++] = c&this.DM; c >>= this.DB;}if(a.t < this.t) { c += a.s; while(i < this.t) {   c += this.data[i];   r.data[i++] = c&this.DM;   c >>= this.DB; } c += this.s;} else { c += this.s; while(i < a.t) {   c += a.data[i];   r.data[i++] = c&this.DM;   c >>= this.DB; } c += a.s;}r.s = (c<0)?-1:0;if(c > 0) r.data[i++] = c;else if(c < -1) r.data[i++] = this.DV+c;r.t = i;r.clamp();}//(public) this + afunction bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }//(public) this - afunction bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }//(public) this * afunction bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }//(public) this / afunction bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }//(public) this % afunction bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }//(public) [this/a,this%a]function bnDivideAndRemainder(a) {var q = nbi(), r = nbi();this.divRemTo(a,q,r);return new Array(q,r);}//(protected) this *= n, this >= 0, 1 < n < DVfunction bnpDMultiply(n) {this.data[this.t] = this.am(0,n-1,this,0,0,this.t);++this.t;this.clamp();}//(protected) this += n << w words, this >= 0function bnpDAddOffset(n,w) {if(n == 0) return;while(this.t <= w) this.data[this.t++] = 0;this.data[w] += n;while(this.data[w] >= this.DV) { this.data[w] -= this.DV; if(++w >= this.t) this.data[this.t++] = 0; ++this.data[w];}}//A "null" reducerfunction NullExp() {}function nNop(x) { return x; }function nMulTo(x,y,r) { x.multiplyTo(y,r); }function nSqrTo(x,r) { x.squareTo(r); }NullExp.prototype.convert = nNop;NullExp.prototype.revert = nNop;NullExp.prototype.mulTo = nMulTo;NullExp.prototype.sqrTo = nSqrTo;//(public) this^efunction bnPow(e) { return this.exp(e,new NullExp()); }//(protected) r = lower n words of "this * a", a.t <= n//"this" should be the larger one if appropriate.function bnpMultiplyLowerTo(a,n,r) {var i = Math.min(this.t+a.t,n);r.s = 0; // assumes a,this >= 0r.t = i;while(i > 0) r.data[--i] = 0;var j;for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t);for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i);r.clamp();}//(protected) r = "this * a" without lower n words, n > 0//"this" should be the larger one if appropriate.function bnpMultiplyUpperTo(a,n,r) {--n;var i = r.t = this.t+a.t-n;r.s = 0; // assumes a,this >= 0while(--i >= 0) r.data[i] = 0;for(i = Math.max(n-this.t,0); i < a.t; ++i) r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n);r.clamp();r.drShiftTo(1,r);}//Barrett modular reductionfunction Barrett(m) {// setup Barrettthis.r2 = nbi();this.q3 = nbi();BigInteger.ONE.dlShiftTo(2*m.t,this.r2);this.mu = this.r2.divide(m);this.m = m;}function barrettConvert(x) {if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);else if(x.compareTo(this.m) < 0) return x;else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }}function barrettRevert(x) { return x; }//x = x mod m (HAC 14.42)function barrettReduce(x) {x.drShiftTo(this.m.t-1,this.r2);if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);x.subTo(this.r2,x);while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);}//r = x^2 mod m; x != rfunction barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }//r = x*y mod m; x,y != rfunction barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }Barrett.prototype.convert = barrettConvert;Barrett.prototype.revert = barrettRevert;Barrett.prototype.reduce = barrettReduce;Barrett.prototype.mulTo = barrettMulTo;Barrett.prototype.sqrTo = barrettSqrTo;//(public) this^e % m (HAC 14.85)function bnModPow(e,m) {var i = e.bitLength(), k, r = nbv(1), z;if(i <= 0) return r;else if(i < 18) k = 1;else if(i < 48) k = 3;else if(i < 144) k = 4;else if(i < 768) k = 5;else k = 6;if(i < 8) z = new Classic(m);else if(m.isEven()) z = new Barrett(m);else z = new Montgomery(m);// precomputationvar g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;g[1] = z.convert(this);if(k > 1) { var g2 = nbi(); z.sqrTo(g[1],g2); while(n <= km) {   g[n] = nbi();   z.mulTo(g2,g[n-2],g[n]);   n += 2; }}var j = e.t-1, w, is1 = true, r2 = nbi(), t;i = nbits(e.data[j])-1;while(j >= 0) { if(i >= k1) w = (e.data[j]>>(i-k1))&km; else {   w = (e.data[j]&((1<<(i+1))-1))<<(k1-i);   if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1); } n = k; while((w&1) == 0) { w >>= 1; --n; } if((i -= n) < 0) { i += this.DB; --j; } if(is1) {  // ret == 1, don't bother squaring or multiplying it   g[w].copyTo(r);   is1 = false; } else {   while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }   if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }   z.mulTo(r2,g[w],r); } while(j >= 0 && (e.data[j]&(1<<i)) == 0) {   z.sqrTo(r,r2); t = r; r = r2; r2 = t;   if(--i < 0) { i = this.DB-1; --j; } }}return z.revert(r);}//(public) gcd(this,a) (HAC 14.54)function bnGCD(a) {var x = (this.s<0)?this.negate():this.clone();var y = (a.s<0)?a.negate():a.clone();if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }var i = x.getLowestSetBit(), g = y.getLowestSetBit();if(g < 0) return x;if(i < g) g = i;if(g > 0) { x.rShiftTo(g,x); y.rShiftTo(g,y);}while(x.signum() > 0) { if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); if(x.compareTo(y) >= 0) {   x.subTo(y,x);   x.rShiftTo(1,x); } else {   y.subTo(x,y);   y.rShiftTo(1,y); }}if(g > 0) y.lShiftTo(g,y);return y;}//(protected) this % n, n < 2^26function bnpModInt(n) {if(n <= 0) return 0;var d = this.DV%n, r = (this.s<0)?n-1:0;if(this.t > 0) if(d == 0) r = this.data[0]%n; else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n;return r;}//(public) 1/this % m (HAC 14.61)function bnModInverse(m) {var ac = m.isEven();if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;var u = m.clone(), v = this.clone();var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);while(u.signum() != 0) { while(u.isEven()) {   u.rShiftTo(1,u);   if(ac) {     if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }     a.rShiftTo(1,a);   } else if(!b.isEven()) b.subTo(m,b);   b.rShiftTo(1,b); } while(v.isEven()) {   v.rShiftTo(1,v);   if(ac) {     if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }     c.rShiftTo(1,c);   } else if(!d.isEven()) d.subTo(m,d);   d.rShiftTo(1,d); } if(u.compareTo(v) >= 0) {   u.subTo(v,u);   if(ac) a.subTo(c,a);   b.subTo(d,b); } else {   v.subTo(u,v);   if(ac) c.subTo(a,c);   d.subTo(b,d); }}if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;if(d.compareTo(m) >= 0) return d.subtract(m);if(d.signum() < 0) d.addTo(m,d); else return d;if(d.signum() < 0) return d.add(m); else return d;}var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];var lplim = (1<<26)/lowprimes[lowprimes.length-1];//(public) test primality with certainty >= 1-.5^tfunction bnIsProbablePrime(t) {var i, x = this.abs();if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) { for(i = 0; i < lowprimes.length; ++i)   if(x.data[0] == lowprimes[i]) return true; return false;}if(x.isEven()) return false;i = 1;while(i < lowprimes.length) { var m = lowprimes[i], j = i+1; while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x.modInt(m); while(i < j) if(m%lowprimes[i++] == 0) return false;}return x.millerRabin(t);}//(protected) true if probably prime (HAC 4.24, Miller-Rabin)function bnpMillerRabin(t) {var n1 = this.subtract(BigInteger.ONE);var k = n1.getLowestSetBit();if(k <= 0) return false;var r = n1.shiftRight(k);var prng = bnGetPrng();var a;for(var i = 0; i < t; ++i) { // select witness 'a' at random from between 1 and n1 do {   a = new BigInteger(this.bitLength(), prng); } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0); var y = a.modPow(r,this); if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {   var j = 1;   while(j++ < k && y.compareTo(n1) != 0) {     y = y.modPowInt(2,this);     if(y.compareTo(BigInteger.ONE) == 0) return false;   }   if(y.compareTo(n1) != 0) return false; }}return true;}// get pseudo random number generatorfunction bnGetPrng() {  // create prng with api that matches BigInteger secure random  return {    // x is an array to fill with bytes    nextBytes: function(x) {      for(var i = 0; i < x.length; ++i) {        x[i] = Math.floor(Math.random() * 0x0100);      }    }  };}//protectedBigInteger.prototype.chunkSize = bnpChunkSize;BigInteger.prototype.toRadix = bnpToRadix;BigInteger.prototype.fromRadix = bnpFromRadix;BigInteger.prototype.fromNumber = bnpFromNumber;BigInteger.prototype.bitwiseTo = bnpBitwiseTo;BigInteger.prototype.changeBit = bnpChangeBit;BigInteger.prototype.addTo = bnpAddTo;BigInteger.prototype.dMultiply = bnpDMultiply;BigInteger.prototype.dAddOffset = bnpDAddOffset;BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;BigInteger.prototype.modInt = bnpModInt;BigInteger.prototype.millerRabin = bnpMillerRabin;//publicBigInteger.prototype.clone = bnClone;BigInteger.prototype.intValue = bnIntValue;BigInteger.prototype.byteValue = bnByteValue;BigInteger.prototype.shortValue = bnShortValue;BigInteger.prototype.signum = bnSigNum;BigInteger.prototype.toByteArray = bnToByteArray;BigInteger.prototype.equals = bnEquals;BigInteger.prototype.min = bnMin;BigInteger.prototype.max = bnMax;BigInteger.prototype.and = bnAnd;BigInteger.prototype.or = bnOr;BigInteger.prototype.xor = bnXor;BigInteger.prototype.andNot = bnAndNot;BigInteger.prototype.not = bnNot;BigInteger.prototype.shiftLeft = bnShiftLeft;BigInteger.prototype.shiftRight = bnShiftRight;BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;BigInteger.prototype.bitCount = bnBitCount;BigInteger.prototype.testBit = bnTestBit;BigInteger.prototype.setBit = bnSetBit;BigInteger.prototype.clearBit = bnClearBit;BigInteger.prototype.flipBit = bnFlipBit;BigInteger.prototype.add = bnAdd;BigInteger.prototype.subtract = bnSubtract;BigInteger.prototype.multiply = bnMultiply;BigInteger.prototype.divide = bnDivide;BigInteger.prototype.remainder = bnRemainder;BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;BigInteger.prototype.modPow = bnModPow;BigInteger.prototype.modInverse = bnModInverse;BigInteger.prototype.pow = bnPow;BigInteger.prototype.gcd = bnGCD;BigInteger.prototype.isProbablePrime = bnIsProbablePrime;//BigInteger interfaces not implemented in jsbn://BigInteger(int signum, byte[] magnitude)//double doubleValue()//float floatValue()//int hashCode()//long longValue()//static BigInteger valueOf(long val)
 |