| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999 | /** * Supported cipher modes. * * @author Dave Longley * * Copyright (c) 2010-2014 Digital Bazaar, Inc. */var forge = require('./forge');require('./util');forge.cipher = forge.cipher || {};// supported cipher modesvar modes = module.exports = forge.cipher.modes = forge.cipher.modes || {};/** Electronic codebook (ECB) (Don't use this; it's not secure) **/modes.ecb = function(options) {  options = options || {};  this.name = 'ECB';  this.cipher = options.cipher;  this.blockSize = options.blockSize || 16;  this._ints = this.blockSize / 4;  this._inBlock = new Array(this._ints);  this._outBlock = new Array(this._ints);};modes.ecb.prototype.start = function(options) {};modes.ecb.prototype.encrypt = function(input, output, finish) {  // not enough input to encrypt  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {    return true;  }  // get next block  for(var i = 0; i < this._ints; ++i) {    this._inBlock[i] = input.getInt32();  }  // encrypt block  this.cipher.encrypt(this._inBlock, this._outBlock);  // write output  for(var i = 0; i < this._ints; ++i) {    output.putInt32(this._outBlock[i]);  }};modes.ecb.prototype.decrypt = function(input, output, finish) {  // not enough input to decrypt  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {    return true;  }  // get next block  for(var i = 0; i < this._ints; ++i) {    this._inBlock[i] = input.getInt32();  }  // decrypt block  this.cipher.decrypt(this._inBlock, this._outBlock);  // write output  for(var i = 0; i < this._ints; ++i) {    output.putInt32(this._outBlock[i]);  }};modes.ecb.prototype.pad = function(input, options) {  // add PKCS#7 padding to block (each pad byte is the  // value of the number of pad bytes)  var padding = (input.length() === this.blockSize ?    this.blockSize : (this.blockSize - input.length()));  input.fillWithByte(padding, padding);  return true;};modes.ecb.prototype.unpad = function(output, options) {  // check for error: input data not a multiple of blockSize  if(options.overflow > 0) {    return false;  }  // ensure padding byte count is valid  var len = output.length();  var count = output.at(len - 1);  if(count > (this.blockSize << 2)) {    return false;  }  // trim off padding bytes  output.truncate(count);  return true;};/** Cipher-block Chaining (CBC) **/modes.cbc = function(options) {  options = options || {};  this.name = 'CBC';  this.cipher = options.cipher;  this.blockSize = options.blockSize || 16;  this._ints = this.blockSize / 4;  this._inBlock = new Array(this._ints);  this._outBlock = new Array(this._ints);};modes.cbc.prototype.start = function(options) {  // Note: legacy support for using IV residue (has security flaws)  // if IV is null, reuse block from previous processing  if(options.iv === null) {    // must have a previous block    if(!this._prev) {      throw new Error('Invalid IV parameter.');    }    this._iv = this._prev.slice(0);  } else if(!('iv' in options)) {    throw new Error('Invalid IV parameter.');  } else {    // save IV as "previous" block    this._iv = transformIV(options.iv, this.blockSize);    this._prev = this._iv.slice(0);  }};modes.cbc.prototype.encrypt = function(input, output, finish) {  // not enough input to encrypt  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {    return true;  }  // get next block  // CBC XOR's IV (or previous block) with plaintext  for(var i = 0; i < this._ints; ++i) {    this._inBlock[i] = this._prev[i] ^ input.getInt32();  }  // encrypt block  this.cipher.encrypt(this._inBlock, this._outBlock);  // write output, save previous block  for(var i = 0; i < this._ints; ++i) {    output.putInt32(this._outBlock[i]);  }  this._prev = this._outBlock;};modes.cbc.prototype.decrypt = function(input, output, finish) {  // not enough input to decrypt  if(input.length() < this.blockSize && !(finish && input.length() > 0)) {    return true;  }  // get next block  for(var i = 0; i < this._ints; ++i) {    this._inBlock[i] = input.getInt32();  }  // decrypt block  this.cipher.decrypt(this._inBlock, this._outBlock);  // write output, save previous ciphered block  // CBC XOR's IV (or previous block) with ciphertext  for(var i = 0; i < this._ints; ++i) {    output.putInt32(this._prev[i] ^ this._outBlock[i]);  }  this._prev = this._inBlock.slice(0);};modes.cbc.prototype.pad = function(input, options) {  // add PKCS#7 padding to block (each pad byte is the  // value of the number of pad bytes)  var padding = (input.length() === this.blockSize ?    this.blockSize : (this.blockSize - input.length()));  input.fillWithByte(padding, padding);  return true;};modes.cbc.prototype.unpad = function(output, options) {  // check for error: input data not a multiple of blockSize  if(options.overflow > 0) {    return false;  }  // ensure padding byte count is valid  var len = output.length();  var count = output.at(len - 1);  if(count > (this.blockSize << 2)) {    return false;  }  // trim off padding bytes  output.truncate(count);  return true;};/** Cipher feedback (CFB) **/modes.cfb = function(options) {  options = options || {};  this.name = 'CFB';  this.cipher = options.cipher;  this.blockSize = options.blockSize || 16;  this._ints = this.blockSize / 4;  this._inBlock = null;  this._outBlock = new Array(this._ints);  this._partialBlock = new Array(this._ints);  this._partialOutput = forge.util.createBuffer();  this._partialBytes = 0;};modes.cfb.prototype.start = function(options) {  if(!('iv' in options)) {    throw new Error('Invalid IV parameter.');  }  // use IV as first input  this._iv = transformIV(options.iv, this.blockSize);  this._inBlock = this._iv.slice(0);  this._partialBytes = 0;};modes.cfb.prototype.encrypt = function(input, output, finish) {  // not enough input to encrypt  var inputLength = input.length();  if(inputLength === 0) {    return true;  }  // encrypt block  this.cipher.encrypt(this._inBlock, this._outBlock);  // handle full block  if(this._partialBytes === 0 && inputLength >= this.blockSize) {    // XOR input with output, write input as output    for(var i = 0; i < this._ints; ++i) {      this._inBlock[i] = input.getInt32() ^ this._outBlock[i];      output.putInt32(this._inBlock[i]);    }    return;  }  // handle partial block  var partialBytes = (this.blockSize - inputLength) % this.blockSize;  if(partialBytes > 0) {    partialBytes = this.blockSize - partialBytes;  }  // XOR input with output, write input as partial output  this._partialOutput.clear();  for(var i = 0; i < this._ints; ++i) {    this._partialBlock[i] = input.getInt32() ^ this._outBlock[i];    this._partialOutput.putInt32(this._partialBlock[i]);  }  if(partialBytes > 0) {    // block still incomplete, restore input buffer    input.read -= this.blockSize;  } else {    // block complete, update input block    for(var i = 0; i < this._ints; ++i) {      this._inBlock[i] = this._partialBlock[i];    }  }  // skip any previous partial bytes  if(this._partialBytes > 0) {    this._partialOutput.getBytes(this._partialBytes);  }  if(partialBytes > 0 && !finish) {    output.putBytes(this._partialOutput.getBytes(      partialBytes - this._partialBytes));    this._partialBytes = partialBytes;    return true;  }  output.putBytes(this._partialOutput.getBytes(    inputLength - this._partialBytes));  this._partialBytes = 0;};modes.cfb.prototype.decrypt = function(input, output, finish) {  // not enough input to decrypt  var inputLength = input.length();  if(inputLength === 0) {    return true;  }  // encrypt block (CFB always uses encryption mode)  this.cipher.encrypt(this._inBlock, this._outBlock);  // handle full block  if(this._partialBytes === 0 && inputLength >= this.blockSize) {    // XOR input with output, write input as output    for(var i = 0; i < this._ints; ++i) {      this._inBlock[i] = input.getInt32();      output.putInt32(this._inBlock[i] ^ this._outBlock[i]);    }    return;  }  // handle partial block  var partialBytes = (this.blockSize - inputLength) % this.blockSize;  if(partialBytes > 0) {    partialBytes = this.blockSize - partialBytes;  }  // XOR input with output, write input as partial output  this._partialOutput.clear();  for(var i = 0; i < this._ints; ++i) {    this._partialBlock[i] = input.getInt32();    this._partialOutput.putInt32(this._partialBlock[i] ^ this._outBlock[i]);  }  if(partialBytes > 0) {    // block still incomplete, restore input buffer    input.read -= this.blockSize;  } else {    // block complete, update input block    for(var i = 0; i < this._ints; ++i) {      this._inBlock[i] = this._partialBlock[i];    }  }  // skip any previous partial bytes  if(this._partialBytes > 0) {    this._partialOutput.getBytes(this._partialBytes);  }  if(partialBytes > 0 && !finish) {    output.putBytes(this._partialOutput.getBytes(      partialBytes - this._partialBytes));    this._partialBytes = partialBytes;    return true;  }  output.putBytes(this._partialOutput.getBytes(    inputLength - this._partialBytes));  this._partialBytes = 0;};/** Output feedback (OFB) **/modes.ofb = function(options) {  options = options || {};  this.name = 'OFB';  this.cipher = options.cipher;  this.blockSize = options.blockSize || 16;  this._ints = this.blockSize / 4;  this._inBlock = null;  this._outBlock = new Array(this._ints);  this._partialOutput = forge.util.createBuffer();  this._partialBytes = 0;};modes.ofb.prototype.start = function(options) {  if(!('iv' in options)) {    throw new Error('Invalid IV parameter.');  }  // use IV as first input  this._iv = transformIV(options.iv, this.blockSize);  this._inBlock = this._iv.slice(0);  this._partialBytes = 0;};modes.ofb.prototype.encrypt = function(input, output, finish) {  // not enough input to encrypt  var inputLength = input.length();  if(input.length() === 0) {    return true;  }  // encrypt block (OFB always uses encryption mode)  this.cipher.encrypt(this._inBlock, this._outBlock);  // handle full block  if(this._partialBytes === 0 && inputLength >= this.blockSize) {    // XOR input with output and update next input    for(var i = 0; i < this._ints; ++i) {      output.putInt32(input.getInt32() ^ this._outBlock[i]);      this._inBlock[i] = this._outBlock[i];    }    return;  }  // handle partial block  var partialBytes = (this.blockSize - inputLength) % this.blockSize;  if(partialBytes > 0) {    partialBytes = this.blockSize - partialBytes;  }  // XOR input with output  this._partialOutput.clear();  for(var i = 0; i < this._ints; ++i) {    this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);  }  if(partialBytes > 0) {    // block still incomplete, restore input buffer    input.read -= this.blockSize;  } else {    // block complete, update input block    for(var i = 0; i < this._ints; ++i) {      this._inBlock[i] = this._outBlock[i];    }  }  // skip any previous partial bytes  if(this._partialBytes > 0) {    this._partialOutput.getBytes(this._partialBytes);  }  if(partialBytes > 0 && !finish) {    output.putBytes(this._partialOutput.getBytes(      partialBytes - this._partialBytes));    this._partialBytes = partialBytes;    return true;  }  output.putBytes(this._partialOutput.getBytes(    inputLength - this._partialBytes));  this._partialBytes = 0;};modes.ofb.prototype.decrypt = modes.ofb.prototype.encrypt;/** Counter (CTR) **/modes.ctr = function(options) {  options = options || {};  this.name = 'CTR';  this.cipher = options.cipher;  this.blockSize = options.blockSize || 16;  this._ints = this.blockSize / 4;  this._inBlock = null;  this._outBlock = new Array(this._ints);  this._partialOutput = forge.util.createBuffer();  this._partialBytes = 0;};modes.ctr.prototype.start = function(options) {  if(!('iv' in options)) {    throw new Error('Invalid IV parameter.');  }  // use IV as first input  this._iv = transformIV(options.iv, this.blockSize);  this._inBlock = this._iv.slice(0);  this._partialBytes = 0;};modes.ctr.prototype.encrypt = function(input, output, finish) {  // not enough input to encrypt  var inputLength = input.length();  if(inputLength === 0) {    return true;  }  // encrypt block (CTR always uses encryption mode)  this.cipher.encrypt(this._inBlock, this._outBlock);  // handle full block  if(this._partialBytes === 0 && inputLength >= this.blockSize) {    // XOR input with output    for(var i = 0; i < this._ints; ++i) {      output.putInt32(input.getInt32() ^ this._outBlock[i]);    }  } else {    // handle partial block    var partialBytes = (this.blockSize - inputLength) % this.blockSize;    if(partialBytes > 0) {      partialBytes = this.blockSize - partialBytes;    }    // XOR input with output    this._partialOutput.clear();    for(var i = 0; i < this._ints; ++i) {      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);    }    if(partialBytes > 0) {      // block still incomplete, restore input buffer      input.read -= this.blockSize;    }    // skip any previous partial bytes    if(this._partialBytes > 0) {      this._partialOutput.getBytes(this._partialBytes);    }    if(partialBytes > 0 && !finish) {      output.putBytes(this._partialOutput.getBytes(        partialBytes - this._partialBytes));      this._partialBytes = partialBytes;      return true;    }    output.putBytes(this._partialOutput.getBytes(      inputLength - this._partialBytes));    this._partialBytes = 0;  }  // block complete, increment counter (input block)  inc32(this._inBlock);};modes.ctr.prototype.decrypt = modes.ctr.prototype.encrypt;/** Galois/Counter Mode (GCM) **/modes.gcm = function(options) {  options = options || {};  this.name = 'GCM';  this.cipher = options.cipher;  this.blockSize = options.blockSize || 16;  this._ints = this.blockSize / 4;  this._inBlock = new Array(this._ints);  this._outBlock = new Array(this._ints);  this._partialOutput = forge.util.createBuffer();  this._partialBytes = 0;  // R is actually this value concatenated with 120 more zero bits, but  // we only XOR against R so the other zeros have no effect -- we just  // apply this value to the first integer in a block  this._R = 0xE1000000;};modes.gcm.prototype.start = function(options) {  if(!('iv' in options)) {    throw new Error('Invalid IV parameter.');  }  // ensure IV is a byte buffer  var iv = forge.util.createBuffer(options.iv);  // no ciphered data processed yet  this._cipherLength = 0;  // default additional data is none  var additionalData;  if('additionalData' in options) {    additionalData = forge.util.createBuffer(options.additionalData);  } else {    additionalData = forge.util.createBuffer();  }  // default tag length is 128 bits  if('tagLength' in options) {    this._tagLength = options.tagLength;  } else {    this._tagLength = 128;  }  // if tag is given, ensure tag matches tag length  this._tag = null;  if(options.decrypt) {    // save tag to check later    this._tag = forge.util.createBuffer(options.tag).getBytes();    if(this._tag.length !== (this._tagLength / 8)) {      throw new Error('Authentication tag does not match tag length.');    }  }  // create tmp storage for hash calculation  this._hashBlock = new Array(this._ints);  // no tag generated yet  this.tag = null;  // generate hash subkey  // (apply block cipher to "zero" block)  this._hashSubkey = new Array(this._ints);  this.cipher.encrypt([0, 0, 0, 0], this._hashSubkey);  // generate table M  // use 4-bit tables (32 component decomposition of a 16 byte value)  // 8-bit tables take more space and are known to have security  // vulnerabilities (in native implementations)  this.componentBits = 4;  this._m = this.generateHashTable(this._hashSubkey, this.componentBits);  // Note: support IV length different from 96 bits? (only supporting  // 96 bits is recommended by NIST SP-800-38D)  // generate J_0  var ivLength = iv.length();  if(ivLength === 12) {    // 96-bit IV    this._j0 = [iv.getInt32(), iv.getInt32(), iv.getInt32(), 1];  } else {    // IV is NOT 96-bits    this._j0 = [0, 0, 0, 0];    while(iv.length() > 0) {      this._j0 = this.ghash(        this._hashSubkey, this._j0,        [iv.getInt32(), iv.getInt32(), iv.getInt32(), iv.getInt32()]);    }    this._j0 = this.ghash(      this._hashSubkey, this._j0, [0, 0].concat(from64To32(ivLength * 8)));  }  // generate ICB (initial counter block)  this._inBlock = this._j0.slice(0);  inc32(this._inBlock);  this._partialBytes = 0;  // consume authentication data  additionalData = forge.util.createBuffer(additionalData);  // save additional data length as a BE 64-bit number  this._aDataLength = from64To32(additionalData.length() * 8);  // pad additional data to 128 bit (16 byte) block size  var overflow = additionalData.length() % this.blockSize;  if(overflow) {    additionalData.fillWithByte(0, this.blockSize - overflow);  }  this._s = [0, 0, 0, 0];  while(additionalData.length() > 0) {    this._s = this.ghash(this._hashSubkey, this._s, [      additionalData.getInt32(),      additionalData.getInt32(),      additionalData.getInt32(),      additionalData.getInt32()    ]);  }};modes.gcm.prototype.encrypt = function(input, output, finish) {  // not enough input to encrypt  var inputLength = input.length();  if(inputLength === 0) {    return true;  }  // encrypt block  this.cipher.encrypt(this._inBlock, this._outBlock);  // handle full block  if(this._partialBytes === 0 && inputLength >= this.blockSize) {    // XOR input with output    for(var i = 0; i < this._ints; ++i) {      output.putInt32(this._outBlock[i] ^= input.getInt32());    }    this._cipherLength += this.blockSize;  } else {    // handle partial block    var partialBytes = (this.blockSize - inputLength) % this.blockSize;    if(partialBytes > 0) {      partialBytes = this.blockSize - partialBytes;    }    // XOR input with output    this._partialOutput.clear();    for(var i = 0; i < this._ints; ++i) {      this._partialOutput.putInt32(input.getInt32() ^ this._outBlock[i]);    }    if(partialBytes <= 0 || finish) {      // handle overflow prior to hashing      if(finish) {        // get block overflow        var overflow = inputLength % this.blockSize;        this._cipherLength += overflow;        // truncate for hash function        this._partialOutput.truncate(this.blockSize - overflow);      } else {        this._cipherLength += this.blockSize;      }      // get output block for hashing      for(var i = 0; i < this._ints; ++i) {        this._outBlock[i] = this._partialOutput.getInt32();      }      this._partialOutput.read -= this.blockSize;    }    // skip any previous partial bytes    if(this._partialBytes > 0) {      this._partialOutput.getBytes(this._partialBytes);    }    if(partialBytes > 0 && !finish) {      // block still incomplete, restore input buffer, get partial output,      // and return early      input.read -= this.blockSize;      output.putBytes(this._partialOutput.getBytes(        partialBytes - this._partialBytes));      this._partialBytes = partialBytes;      return true;    }    output.putBytes(this._partialOutput.getBytes(      inputLength - this._partialBytes));    this._partialBytes = 0;  }  // update hash block S  this._s = this.ghash(this._hashSubkey, this._s, this._outBlock);  // increment counter (input block)  inc32(this._inBlock);};modes.gcm.prototype.decrypt = function(input, output, finish) {  // not enough input to decrypt  var inputLength = input.length();  if(inputLength < this.blockSize && !(finish && inputLength > 0)) {    return true;  }  // encrypt block (GCM always uses encryption mode)  this.cipher.encrypt(this._inBlock, this._outBlock);  // increment counter (input block)  inc32(this._inBlock);  // update hash block S  this._hashBlock[0] = input.getInt32();  this._hashBlock[1] = input.getInt32();  this._hashBlock[2] = input.getInt32();  this._hashBlock[3] = input.getInt32();  this._s = this.ghash(this._hashSubkey, this._s, this._hashBlock);  // XOR hash input with output  for(var i = 0; i < this._ints; ++i) {    output.putInt32(this._outBlock[i] ^ this._hashBlock[i]);  }  // increment cipher data length  if(inputLength < this.blockSize) {    this._cipherLength += inputLength % this.blockSize;  } else {    this._cipherLength += this.blockSize;  }};modes.gcm.prototype.afterFinish = function(output, options) {  var rval = true;  // handle overflow  if(options.decrypt && options.overflow) {    output.truncate(this.blockSize - options.overflow);  }  // handle authentication tag  this.tag = forge.util.createBuffer();  // concatenate additional data length with cipher length  var lengths = this._aDataLength.concat(from64To32(this._cipherLength * 8));  // include lengths in hash  this._s = this.ghash(this._hashSubkey, this._s, lengths);  // do GCTR(J_0, S)  var tag = [];  this.cipher.encrypt(this._j0, tag);  for(var i = 0; i < this._ints; ++i) {    this.tag.putInt32(this._s[i] ^ tag[i]);  }  // trim tag to length  this.tag.truncate(this.tag.length() % (this._tagLength / 8));  // check authentication tag  if(options.decrypt && this.tag.bytes() !== this._tag) {    rval = false;  }  return rval;};/** * See NIST SP-800-38D 6.3 (Algorithm 1). This function performs Galois * field multiplication. The field, GF(2^128), is defined by the polynomial: * * x^128 + x^7 + x^2 + x + 1 * * Which is represented in little-endian binary form as: 11100001 (0xe1). When * the value of a coefficient is 1, a bit is set. The value R, is the * concatenation of this value and 120 zero bits, yielding a 128-bit value * which matches the block size. * * This function will multiply two elements (vectors of bytes), X and Y, in * the field GF(2^128). The result is initialized to zero. For each bit of * X (out of 128), x_i, if x_i is set, then the result is multiplied (XOR'd) * by the current value of Y. For each bit, the value of Y will be raised by * a power of x (multiplied by the polynomial x). This can be achieved by * shifting Y once to the right. If the current value of Y, prior to being * multiplied by x, has 0 as its LSB, then it is a 127th degree polynomial. * Otherwise, we must divide by R after shifting to find the remainder. * * @param x the first block to multiply by the second. * @param y the second block to multiply by the first. * * @return the block result of the multiplication. */modes.gcm.prototype.multiply = function(x, y) {  var z_i = [0, 0, 0, 0];  var v_i = y.slice(0);  // calculate Z_128 (block has 128 bits)  for(var i = 0; i < 128; ++i) {    // if x_i is 0, Z_{i+1} = Z_i (unchanged)    // else Z_{i+1} = Z_i ^ V_i    // get x_i by finding 32-bit int position, then left shift 1 by remainder    var x_i = x[(i / 32) | 0] & (1 << (31 - i % 32));    if(x_i) {      z_i[0] ^= v_i[0];      z_i[1] ^= v_i[1];      z_i[2] ^= v_i[2];      z_i[3] ^= v_i[3];    }    // if LSB(V_i) is 1, V_i = V_i >> 1    // else V_i = (V_i >> 1) ^ R    this.pow(v_i, v_i);  }  return z_i;};modes.gcm.prototype.pow = function(x, out) {  // if LSB(x) is 1, x = x >>> 1  // else x = (x >>> 1) ^ R  var lsb = x[3] & 1;  // always do x >>> 1:  // starting with the rightmost integer, shift each integer to the right  // one bit, pulling in the bit from the integer to the left as its top  // most bit (do this for the last 3 integers)  for(var i = 3; i > 0; --i) {    out[i] = (x[i] >>> 1) | ((x[i - 1] & 1) << 31);  }  // shift the first integer normally  out[0] = x[0] >>> 1;  // if lsb was not set, then polynomial had a degree of 127 and doesn't  // need to divided; otherwise, XOR with R to find the remainder; we only  // need to XOR the first integer since R technically ends w/120 zero bits  if(lsb) {    out[0] ^= this._R;  }};modes.gcm.prototype.tableMultiply = function(x) {  // assumes 4-bit tables are used  var z = [0, 0, 0, 0];  for(var i = 0; i < 32; ++i) {    var idx = (i / 8) | 0;    var x_i = (x[idx] >>> ((7 - (i % 8)) * 4)) & 0xF;    var ah = this._m[i][x_i];    z[0] ^= ah[0];    z[1] ^= ah[1];    z[2] ^= ah[2];    z[3] ^= ah[3];  }  return z;};/** * A continuing version of the GHASH algorithm that operates on a single * block. The hash block, last hash value (Ym) and the new block to hash * are given. * * @param h the hash block. * @param y the previous value for Ym, use [0, 0, 0, 0] for a new hash. * @param x the block to hash. * * @return the hashed value (Ym). */modes.gcm.prototype.ghash = function(h, y, x) {  y[0] ^= x[0];  y[1] ^= x[1];  y[2] ^= x[2];  y[3] ^= x[3];  return this.tableMultiply(y);  //return this.multiply(y, h);};/** * Precomputes a table for multiplying against the hash subkey. This * mechanism provides a substantial speed increase over multiplication * performed without a table. The table-based multiplication this table is * for solves X * H by multiplying each component of X by H and then * composing the results together using XOR. * * This function can be used to generate tables with different bit sizes * for the components, however, this implementation assumes there are * 32 components of X (which is a 16 byte vector), therefore each component * takes 4-bits (so the table is constructed with bits=4). * * @param h the hash subkey. * @param bits the bit size for a component. */modes.gcm.prototype.generateHashTable = function(h, bits) {  // TODO: There are further optimizations that would use only the  // first table M_0 (or some variant) along with a remainder table;  // this can be explored in the future  var multiplier = 8 / bits;  var perInt = 4 * multiplier;  var size = 16 * multiplier;  var m = new Array(size);  for(var i = 0; i < size; ++i) {    var tmp = [0, 0, 0, 0];    var idx = (i / perInt) | 0;    var shft = ((perInt - 1 - (i % perInt)) * bits);    tmp[idx] = (1 << (bits - 1)) << shft;    m[i] = this.generateSubHashTable(this.multiply(tmp, h), bits);  }  return m;};/** * Generates a table for multiplying against the hash subkey for one * particular component (out of all possible component values). * * @param mid the pre-multiplied value for the middle key of the table. * @param bits the bit size for a component. */modes.gcm.prototype.generateSubHashTable = function(mid, bits) {  // compute the table quickly by minimizing the number of  // POW operations -- they only need to be performed for powers of 2,  // all other entries can be composed from those powers using XOR  var size = 1 << bits;  var half = size >>> 1;  var m = new Array(size);  m[half] = mid.slice(0);  var i = half >>> 1;  while(i > 0) {    // raise m0[2 * i] and store in m0[i]    this.pow(m[2 * i], m[i] = []);    i >>= 1;  }  i = 2;  while(i < half) {    for(var j = 1; j < i; ++j) {      var m_i = m[i];      var m_j = m[j];      m[i + j] = [        m_i[0] ^ m_j[0],        m_i[1] ^ m_j[1],        m_i[2] ^ m_j[2],        m_i[3] ^ m_j[3]      ];    }    i *= 2;  }  m[0] = [0, 0, 0, 0];  /* Note: We could avoid storing these by doing composition during multiply  calculate top half using composition by speed is preferred. */  for(i = half + 1; i < size; ++i) {    var c = m[i ^ half];    m[i] = [mid[0] ^ c[0], mid[1] ^ c[1], mid[2] ^ c[2], mid[3] ^ c[3]];  }  return m;};/** Utility functions */function transformIV(iv, blockSize) {  if(typeof iv === 'string') {    // convert iv string into byte buffer    iv = forge.util.createBuffer(iv);  }  if(forge.util.isArray(iv) && iv.length > 4) {    // convert iv byte array into byte buffer    var tmp = iv;    iv = forge.util.createBuffer();    for(var i = 0; i < tmp.length; ++i) {      iv.putByte(tmp[i]);    }  }  if(iv.length() < blockSize) {    throw new Error(      'Invalid IV length; got ' + iv.length() +      ' bytes and expected ' + blockSize + ' bytes.');  }  if(!forge.util.isArray(iv)) {    // convert iv byte buffer into 32-bit integer array    var ints = [];    var blocks = blockSize / 4;    for(var i = 0; i < blocks; ++i) {      ints.push(iv.getInt32());    }    iv = ints;  }  return iv;}function inc32(block) {  // increment last 32 bits of block only  block[block.length - 1] = (block[block.length - 1] + 1) & 0xFFFFFFFF;}function from64To32(num) {  // convert 64-bit number to two BE Int32s  return [(num / 0x100000000) | 0, num & 0xFFFFFFFF];}
 |